Fine fun on the line — with a Hornby!

You have spent many happy hours watching real trains at work. Now start a railway of your own and enjoy the thrill of operating Engines, Coaches, Wagons, Signals and Points on actual railway principles. It’s the most fascinating pastime in the world!

From the day of their introduction Hornby Trains have always represented the latest model railway practice. Designs are continually being improved and new items added so that the system is complete in practically every detail. There are Locomotives for all duties, driven by electric motors or by clockwork. There is Rolling Stock of all kinds including Pullman Cars, ordinary Coaches and Guard’s Vans for passenger services, and numerous Wagons and Vans for freight working.

The Accessories are now better than ever before, while the Rails, Points and Crossings enable an endless variety of layouts to be constructed, both for Electric and Clockwork Trains.

Ask your dealer for a copy of the latest Hornby Train price list.

Manufactured by
MECCANO LTD.
Binns Road
LIVERPOOL 13

HORNBY LOCOMOTIVES
Electric and Clockwork

Hornby Electric Locomotives are fitted with powerful and efficient motors capable of hauling heavy loads at high speeds. All Hornby Electric Locomotives can be controlled for speed, and for starting and stopping, from the lineside. The most complete control is afforded with the 20-volt locomotives fitted with Automatic Reversing mechanism. This enables a train to be started and stopped, controlled for speed, and reversed from the lineside without touching the locomotive at all.

Hornby Clockwork Locomotives are the longest-running spring-driven locomotives of their respective types in the world. The motors fitted are of the highest possible quality, being perfect pieces of mechanism with accurately cut gears that ensure smooth and steady running.

NEW LOCOMOTIVES FOR OLD

Every owner of a Hornby Locomotive should know of the wonderful scheme that exists under which splendid new Hornby Locomotives may be secured in exchange for old ones, as a small cost. Ask your dealer for a copy of the leaflet giving full particulars of the scheme. If you have any difficulty in obtaining this leaflet write for a copy to Meccano Ltd., Binns Road, Liverpool 13.
TRI-ANG

Many new and interesting lines are being shown at the British Industries Fair

MITCHAM
A fine Car for small children. Pressed steel body with Magna type radiator. Double crank drive. Steel disc wheels, enamelled in red with ½ white auto-tread tyres. Mudguards and running boards. Equipment includes adjustable windshield, lamps, petrol and oil cans. Length 36 ins. 21/-

WIMBLEDON

Tri-ang Trikes
There are twenty-five different models of Tri-ang Trikes from which to choose. Ask your dealer for particulars.

TRI-ANG JUNIOR TRIKE No. 401B
Strong cycle tube frames, enamelled black; gold lines. Adjustable saddle. Thick white auto-tread tyres. Nickel plated fittings. 21'/9

TRI-ANG TRICYCLE No. 5
Cycle-chain drive with free wheel. Frame of best quality welded cycle tubing. 14" wheels with 1½" sponge tyres. Ball-bearing pedals. Coil-spring saddle. Finished black or blue or cycle enamel, gold lines. Chromium fittings. 59'/6

Juvenile Cycles

JUVENILE CYCLE No. 9 (Boy's)
Frame of best quality welded steel cycle tubing. Adjustable ball-bearings throughout. 16" x 1½" Dunlop pneumatic tyres on rustless tangent spoked wheels. Two rim brakes. Raised handlebars. 1½" x 1" cycle roller chain. Three coil saddle. Black or blue. Chromium plated fittings. GIRL'S MODEL same price 57'/6

JUVENILE CYCLE No. 14 (Boy's)
18" Frame, for ages 8-12. Finest quality British tubes. 16½" x 1¾" Dunlop pneumatic tyres. Three coil leather saddle. 3½" x ¾" roller chain. Ball-bearings throughout, two rim brakes. Free wheel. Black or blue. Usual bright parts Chromium plated. GIRL'S MODEL same price 59'/6

ON SALE AT ALL GOOD TOY SHOPS, STORES, & CYCLE DEALERS

These prices are not applicable to Ireland.

The fourth of an interesting series of articles by the well-known designer responsible for the construction of the most perfect of all scale model aeroplanes, the "FROG" and "PUSS-MOTH".

The Use of the Gear Box in Scale Model Aeroplanes

Distributing the Weight of the Power Unit
One of the major problems in the successful design of FLYING Scale Model Aeroplanes is the power unit and the weight distribution of this power unit over the fuselage. Elastic is the most suitable material for the purpose, but it is not easy to get the required number of twists to make the model stay in the air long enough to make a flight.

How Non-Scale 'Planes are Designed
Non-Scale Models are made with long out-of-proportion fuselages and large airscrews, the aircrew having to act as a brake to prevent the elastic unwinding too quickly, as well as acting as a propelling force. But, not only is an aeroplane made in this way absurdly out of proportion with the wings in the wrong place—it is obviously wrong to have to use the aircrew as a brake.

The Problem Solved
The designers of the "FROG" overcame all these difficulties by the use of the GEAR BOX and GEARED-UP MOTOR—Gear boxes have been used before but not the Geared-up Motor. This Geared-up Motor makes it possible to make the elastic motor much shorter because ONE TURN on the elastic gives approximately THREE-AND-A-HALF turns on the airscrew.

What the Geared-up Motor Does
The shorter motor and the weight of the gear box does three very important things. (1) It brings the weight nearer the nose of the aeroplane and enables the wings to be put in their proper position. (2) It makes the fuselage shorter and the exact scale model possible. (3) It enables a correct size airscrew to be fitted owing to the high speed of the airscrew shaft driven by the geared-up motor.

You will find illustrations and prices, with many details, of the "Frog" models below.

"FROG"—THE FOREMOST NAME IN MODEL AVIATION

PUSS-MOTH MONOPLANE
A magnificent scale model of the famous record-breaking light aeroplane. All metal fuselage with bulk-head reinforcement, hollow wings of special design and construction. Dual motor-coupled gear box, transparent cabin and roof lights. "Frog" patent quick detachable fittings.
Complete with high-speed winder box, spare motor, insertor rod, gear-box oil, elastic lubricant and illustrated flying manual. Wing span 18 ins. Flies 600 ft.
Price 17'6

INTERCEPTOR FIGHTER
A scale model of high-speed Monoplane. Tubular construction, patented quick detachable fittings, High efficiency aircrew. A popular machine for realistic stunting. The "Frog" is sold complete with spare motors, lubricant and gear-box oil, patent high-speed winder box and illustrated flying manual. Wing span 11½ ins. Flies 300 ft.
Price 7'6

Designed and made by International Model Aircraft Ltd., London, S.W.19
SOLE CONCESSIONAIRES:
LINES BROS. LTD., Tri-ang Works, Morden Rd., London, S.W.19
The most famous military aeroplane in the world—the most formidable aerial weapon ever known—there's little need to tell you the name of the Hawker Hart. And now you may own and fly an almost exact reproduction in miniature of this wonderful fighter! The very latest 'Frog'—the flying scale model Hawker Hart—is waiting for you at your local shop today!

Complete with extra strong HIGH-SPEED WINDER-BOX, lubricant for Gearbox and motors, triple insertor rod, spare motors and profusely illustrated flying manual.

42'

This 'Frog' Hawker Hart is designed (like the real machine) for short distance bombing. Every detail has been carefully considered to give complete realism to this wonder 'plane. There is actually a miniature Vickers-Scarff gun mounting ring before the observer's cockpit and a life-like instrument board in the pilot's cockpit. And the flying performance of this new machine is remarkable.

Come and see the Hawker Hart now!

SPECIFICATION
Telescopic spring-loaded undercarriage. Unique fuselage built up on a reinforced structure of steel, duralumin and timber, covered either with aluminium, alloy sheet or a celluoid-paper—the only material capable of reproducing the exact form, shape and appearance of full-size aeroplane parts. Wings reinforced with internal ribbing and attached to fuselage with quick detachable fittings. Triple, 4-strand motor and watch type gearbox. Precision cut airscrew and spinner.

Wing Span, 18.75 ins. Overall Length, 15.36 ins. Average Length of Flight, 700 ft.

Owners of a 'Frog' FLIGHTS, HAWKER HART are eligible for the handsome badges, price 4d. each, when the proficiency tests have been passed.

Made by INTERNATIONAL MODEL AIRCRAFT LTD., LONDON, S.W.19

Sale Concessionaires: LINES BROS. LTD., Tri-ang Works, Morden Road, Merton, S.W.19

Rather! And I've already won my FROG Pilot Badge with it.
THREE FASCINATING HOBBIES FOR BOYS

NOW in the dark winter evenings we are eager for something to do—let it be MODEL MAKING this year. Get Dad to start you off with one of the splendid array of BASSETT-LOWKE models. They can be had at all prices—Locomotives, Yachts, Motor Boats, and Engines, besides Fittings and Parts if you want to make your own particular model. Visit London Shop or send a penny stamp to Northampton for the two colour photogravure Booklet of Trains and Boats, No. 17.

SWIFTA SERIES BOAT, No. 88

An exceedingly attractive boat, electrically propelled, overall length 21 in. Beam 3½ in. Price 2s. 6d. from 5.17 MODEL SHIP CATALOGUE.

One model from B.17 MODEL ENGINE CATALOGUE. Every ship lover will revel in the pages of this splendidly illustrated book on ships and ship models, written by engineers and naval experts. 6d. post free.

No. 3 "Litalite"

No. 3 "Litalite" in black and several attractive colours, 3/6 complete. White 4/-. "Dualite"—a novel combined rear lamp and red reflector of approved type. Can be used as either. Complete with battery, and low-consumption bulb, 3/6. White body 3d. extra.

NEW YORK CENTRAL RAILWAY MODEL

This smart American-type engine costs 7 Guineas. Electric 20 volts a.c., reversing and starting from cab or track. Gauge O. (2½")

Just one example from A.17 MODEL RAILWAY CATALOGUE. Every boy will find something useful in this handbook and list combined. Over 150 pages (new edition), price 6d.

Matte black with silver lining is the colour scheme of the fine American express above, which among other things, is fitted with a remarkable amount of detail—cow-catcher, head-lights, imitation glass windows, and imitation coal on the tender, and will negotiate a curve of 3 ft. radius. Gauge O. A/C current.

This splendid Traction Engine should greatly interest readers. The complete set of castings and parts can be obtained, as well as the finished model. Full details are contained in the new Bassett-Lowke Stationary Engine List B.17, price 6d. post free.

The boy who likes Ship Models will find No. 88 of the SWIFTA series a fine addition to his fleet. Shining white enamel and bright fittings with a reliable permanent magnet motor labels this craft both smart and swift.

BASSETT-LOWKE LTD.

NORTHAMPTON

London: 112, High Holborn, W.C.1
Manchester: 28, Corporation Street

BLUEMEL'S FOR SAFETY!

Here are two lamps both serviceable and handsome, of the latest type moulded construction. They are definitely proof against battery sulphation, and cannot corrode or rust. Most good dealers sell them.

No. 3 "Litalite"

"Dualite"—a novel combined rear lamp and red reflector of approved type. Can be used as either. Complete with battery, and low-consumption bulb, 3/6. White body 3d. extra.

Fully illustrated list post free from Blueemel Bros. Ltd., Dept. 27, Wolston, near Coventry.

NO HOME IS DULL that has a RILEY BILLIARD TABLE

8/- DOWN

Introducing the delivery of a Riley "Home" Billiard Table. You pay no carriage and no take transit risks.

7 DAYS'

1 Free Trial, Rileys pay carriage and take transit risks.

Days

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Monthly payment

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Cost of Table

24/6

24/0

23/6

23/0

22/6

22/0

21/6

21/0

20/6

20/0

19/6

19/0

18/6

18/0

17/6

17/0

16/6

16/0

15/6

15/0

14/6

14/0

13/6

13/0

12/6

12/0

11/6

11/0

10/6

10/0

9/6

9/0

8/6

8/0

7/6

7/0

6/6

6/0

5/6

5/0

4/6

4/0

3/6

3/0

2/6

2/0

1/6

1/0

0/6

0/0

DINE AND PLAY ON THE SAME TABLE

The Riley "Combine" Billiard and Dining Table offers something unique in house furnishing, combining in one a beautiful dining table and a flawless billiard table. After dining, it is ready in a couple of minutes for a delightful game of Billiards. Available in many attractive designs, oak or mahogany, for cash or on easy terms. Here are the sizes and prices for the round leg mahogany pattern.

5 ft. 4 ins. x 2 ft. 10 ins. 6 ft. 4 ins. x 3 ft. 4 ins. 7 ft. 4 ins. x 3 ft. 10 ins. 8 ft. 4 ins. x 4 ft. 4 ins. or in 13 or 20 monthly payments.

£22 10 0
£36 10 0
£49 0 0
£58 0 0

Rileys are the largest makers of full size Billiard Tables in Great Britain. Also specialists in accessories, re-covering tables, etc.

E. J. RILEY LTD.

DEAL WORKS, ACCRINGTON

and Dept. 6, 147, Aidersgate Street, London, E.C.1
Have you had a copy of our Annual Catalogue? If not, make sure of getting one at once.

POST FREE ON REQUEST

MODEL DOCKYARD
An exact model dockyard with electric harbour lights, operated with a 4½ volt pocket lamp battery. Price, including battery, 5/-.
Dinky toy ships, as illustrated in the harbour, par set of six. 3/6.
The very thing to give a background to your waterline models. Postage 1d.

THE "AVIAN" SAILPLANE
"Avian" Sailplane, unbreakable, silver and red finish, curved wing which ensures lift. Real glider catapult. Wonderful flights. The only glider at such a low price which really glides and conforms to the principles of gliding. Price 2/6. Postage 6d.

THE LATEST SPORT FOR BOYS
Better than Kite Flying

BENTURNER PARACHUTE
Every "Wairnford" Flier should have one. The most ingenious parachute, for flying model aeroplanes. Silk chute, folds up into packet and is held to aeroplane by special release operated from elastic motor. When plane is at a height, release will allow parachute to fall and open. Price 2/-. Spare chutes 1/-.
Constructional set. Price 1/-.
Postage 6d.

RIPLEY'S "BELIEVE IT OR NOT"
Ripley's of the "Sunday Express". Believe it or not. A complete set of well-known questions and answers. Turn the left-hand wheel to question, then rotate right-hand wheel until the red light shows, which will denote the answer. Price 5/- (foreign). Eight sets of questions and answers, a fund of knowledge and amusement. Postage 1d.

SPEEDOMETER
Cooper Stewart Speedometer is suitable for all pedal cycles. Fitted with flexible shaft and front wheel drive, it will register accurately whether fitted to the right or left side of the machine. Easily fitted. Price 1½/6.
When ordering, please specify whether for 26 in. or 26 in. wheel.

THE "AVIAN" AIRSHIP
"Avian" Airship, the only flying airship on the market. Full low pressure rubber bag with gas (coal). Can hover by attaching ballast in form of hanging cord. Elastic driven motor. Price 5/-.
Postage 6d.
MECCANO

DINKY TOYS

150 Varieties

Meccano Dinky Toys are the most realistic and the most attractive models in miniature ever produced.

One of the most important additions recently made is the scale model of the Cunard White Star Liner “Queen Mary” (Meccano Dinky Toys No. 52, see page VII). This is a magnificent model of the world’s largest liner.

Many of these toys are ideal for giving the finishing touch to your model railways. You must have railwaymen to deal with your trains, and passengers to travel in them; car attendants to look after the passengers, and engineers for the maintenance of the railway and its equipment. You want farmyard animals for lineside fields, and you should have at least one of the famous “Hall’s Distemper” advertisements alongside your line.

Then there are the miniature train sets, rail car and various other types of motor vehicle. You can have hours of fun running these on the table or on the floor, arranging road and rail transport services from one point to another.

These splendid toys can all be purchased separately at the prices shown, or they can be obtained in complete sets. Ask your dealer to show you the complete range of Meccano Dinky Toys.

New items are constantly being added to the series of Meccano Dinky Toys, to increase the fun and fascination.

Manufactured by MECCANO LTD., Binns Road, LIVERPOOL 13
MECCANO
DINKY TOYS
Made of the finest materials

A fascinating collecting hobby

150 Varieties

MECCANO DINKY TOYS No. 60
AEROPLANES
No. 60a Imperial Airways Liner each 9d.
No. 60b D.H. "Leopard Moth" 6d.
No. 60c Percival "Gull" 6d.
No. 60d Low Wing Monoplane 6d.
No. 60e General "Monospar" 6d.
No. 60f Cierva "Auto-giro" 6d.
Price of complete set 3/-

MECCANO DINKY TOYS No. 25
COMMERCIAL MOTOR VEHICLES
Fitted with rubber tyres and silver-plated radiators.
No. 25a Wagon each 9d.
No. 25b Covered Van 9d.
No. 25c Flat Truck 9d.
No. 25d Petrol Tank Wagon 9d.
No. 25e Tipping Wagon 9d.
No. 25f Market Gardener's Van 9d.
Price of complete set 4/6

Finished in Bright Colours

CUNARD WHITE STAR LINER "QUEEN MARY"
A scale model of the World's largest ocean liner.
Price 1/- each

Meccano Dinky Toys No. 52a. Exactly as No. 52, but fitted with roller wheels. Price 1/- each

Meccano Dinky Toys No. 32
"AIRFLOW" SALOON
Assorted colours. Fitted with rubber tyres. Silver-plated radiator and bumpers. Price 9d. each.

Meccano Dinky Toys No. 50
SHIPS OF THE BRITISH NAVY
No. 50a Battle Cruiser "Hood" each 9d.
No. 50b Battleships, " Nelson " Class (3) 6d.
No. 50c Cruiser "Effingham" 6d.
No. 50d Cruiser "York" 6d.
No. 50e "Submarine," "X" Class each 1d.
Price of complete set 3/6

Meccano Dinky Toys No. 23
RACING CAR
Assorted Colours. Fitted with rubber tyres. Price 6d. each

Meccano Dinky Toys No. 51
FAMOUS LINERS
No. 51a "Europa" each 9d.
No. 51c "Strathaird" each 6d.
No. 51d "Empress of Britain" 6d.
Price of complete set 5/6

Ve Dinky Toys No. 29
MOTOR LUR
Assorted Colours. Price 6d. each

Meccano Dinky Toys No. 27
TRAM CAR
Assorted Colours. Price 6d. each

Manufactured by MECCANO LTD., Binns Road, LIVERPOOL 13
Hornby Series

HORNBY ACCESSORIES

There is a splendid range of Railway Accessories in the Hornby Series, built in perfect proportion and beautifully finished. With these realistic accessories the most elaborate model railway may be constructed and operated in exactly the same manner as a real railway.

A selection of Hornby Accessories is illustrated below. Ask your dealer to show you the full range.

STATION No. 2
Excellent model, beautifully designed. Built up in three detachable sections. Length 2 ft. 9 in., breadth 6 in., height 7 in.

- No. 1 SIGNAL CABIN
 - Price 2/9

LEVEL CROSSING No. 1
Suitable for a single track only and has gauge O rails in position.

- Price 2/11

M STATION SET
(7 pieces) Price 3/-
The components of the M Station Set can be purchased separately as follows:
- M Signal Box. Price 4d.
- M Signals. Price 4d.
- M Telegraph Pole No. 1. Price 3d.
- M Station. Price 1/-
- M Wanside Station. Price 9d.

- LEVEL CROSSING No. 2
 - Measures 13 in. x 12 in., with two tracks of gauge O rails in position.
 - Dimensions: Height 6 in., width 3½ in., length 8 in. Roof and back open to allow Lever Frame to be fitted inside cabin if desired.
 - Price 4/6

LEVEL CROSSING No. 2 (Electrical)
Similar to Level Crossing No. 2 excepting that a third rail is fitted in each of the two tracks.

- Price 7/6

TUNNEL No. 0 (Straight)
Length 6 in., width 6½ in.

- Price 1/3

TUNNEL No. 1 (Straight)
Length 7½ in., width 6½ in.

- Price 1/9

TUNNEL No. 2 (Straight)
Length 15 in., width 9½ in.

- Price 2/4

TUNNEL No. 3 (Curved)
Length 13 in.

- Price 4/9

TUNNEL No. 4 (Curved)
(as illustrated)
Length 20 in. For 2 ft. radius tracks only.

- Price 4/9

WATER TANK
Fitted with flexible tube and valve lever.

- Length 6 in., height 6½ in., width 6 in.
- Price 3/-

WATER TANK
Fitted with flexible tube and valve lever.

- Length 6½ in., height 6 in., width 6 in.
- Price 7/6

GOODS PLATFORM No. 2
The crane at the end of the platform revolves on its base.

- Length 16½ in., height 6½ in., width 6 in.
- Price 12/6

LOADING GAUGE
(illustrated)

- Price 1/-

PLATELAYER'S HUT
Price 1/-

TURNTABLE No. 2
Price 3/9

VIADUCT
Price 6/6

VIADUCT Centre Section only
Price 4/-

VIADUCT (Electrical)
Price 7/6

VIADUCT (Electrical) Centre Section only
Price 4/-

MECCANO LIMITED – BINNS ROAD – LIVERPOOL 13
If you want to obtain the fullest enjoyment from the Meccano hobby you should operate your models by means of one of the Meccano power units listed below. Each one is strongly made and the utmost care is taken in its manufacture to ensure that it will give entire satisfaction.

CLOCKWORK MOTORS

- X Series Clockwork Motor. This non-reversing Motor is specially designed to drive models built with Meccano X Series parts. Price 2/6.

ELECTRIC MOTORS

- No. 1 Electric Motor (6-volt). Non-reversing. Price 9/-.
- No. 6 Electric Motor (6-volt). Reversing. Price 15/-.

It is important to note that the 6-volt Electric Motor cannot be run satisfactorily from dry cells.

ACUMULATORS

- 5-volt 20 amp. hr. Accumulator for running 6-volt Meccano Electric Motors. Price 27/-.
- 5-volt 20 amp. hr. Accumulator for converting a 6-volt accumulator to 6-volt. Price 9/-.

RESISTANCE CONTROLLERS (6-volt or 20-volt)

- By use of these Controllers the speed of Meccano Electric Motors and Hornby Electric Trains can be regulated as desired. Price 6-volt (or 20-volt) 3/9.

MECCANO STEAM ENGINE

Price 25/-

MECCANO LIMITED — BINNS ROAD — LIVERPOOL 13
The Best Hobby
in the World for Boys

Every boy is happiest when he is inventing, creating and building. That is the reason for the everlasting popularity of Meccano. It is the most wonderful and the most fascinating hobby in the world, because it enables full scope to be given to all the inclinations and desires that are the natural heritage of boys.

The Meccano System is better now than ever. All the parts are finished in a striking new colour combination of Blue and Gold, and the models constructed with them are of a brilliance never before attainable. In addition, the scope of the Outfits is greatly increased by the inclusion of new and specially designed parts. Among these are Strip Plates, intended primarily for filling in purposes; Hinged Flat Plates that simplify completely the problem of roof structures; Flexible Plates made of fibre board that can be bent to almost any desired shape; and a Road Wheel and Steering Wheel that will be invaluable to builders of Motor Car models.

See the New Meccano at your dealers. Take Dad with you!

Prices of Meccano Outfits

<table>
<thead>
<tr>
<th>COMPLETE OUTFITS</th>
<th>ACCESSORY OUTFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Outfit</td>
<td>each 5/-</td>
</tr>
<tr>
<td>B</td>
<td>7/-</td>
</tr>
<tr>
<td>C</td>
<td>10/-</td>
</tr>
<tr>
<td>D</td>
<td>15/-</td>
</tr>
<tr>
<td>E</td>
<td>20/-</td>
</tr>
<tr>
<td>F</td>
<td>25/-</td>
</tr>
<tr>
<td>H</td>
<td>30/-</td>
</tr>
<tr>
<td>G</td>
<td>35/-</td>
</tr>
<tr>
<td>I</td>
<td>40/-</td>
</tr>
</tbody>
</table>

A Meccano Outfit. Price 5/-

D Meccano Outfit. Price 15/-

Meccano Limited, Binns Road, Liverpool 13

If you wish you can still obtain Meccano Outfits and Parts with the Red-Green finish.

This splendid racing model of a Motor Chassis is built entirely of Meccano Parts. It is fitted with Ackerman steering gear, four-speed forward and reverse gear box, single plate clutch, and differential gear. A beautifully illustrated 8-page folder, giving full instructions for building the model, can be obtained from any Meccano dealer, price 3d., or direct from Meccano Ltd., Binns Road, Liverpool 13, price 4d., post free.
A Fascinating Pastime for Boys and Girls

The new Meccano Dinky Builder Outfits are ideal for all young boys and girls who are interested in model-building. The parts, tastefully enamelled in jade green and salmon pink, are fitted together in the most simple manner without the use of any nuts and bolts, giving results that are attractive and of exceptional interest. Two Outfits are available: No. 1 for general construction, including wheel toys, and No. 2 for making groups of miniature furniture. A brightly coloured Instruction Folder, that shows how extremely interesting and ingenious are the models that can be built, is included with each Outfit.

Your dealer will be pleased to show you these fine new Meccano Dinky Builder Outfits.

No. 1 Dinky Builder Outfit
This Outfit contains a good selection of parts with which a large number of models can be made. It includes two trees on die-cast stands that lend the correct atmosphere to models of farm buildings, churches, etc. A further attraction are the wheels, finished in blue with white tyres, for constructing miniature wheel toys. The beautifully coloured instruction leaflet included in the Outfit illustrates a total of 44 models that any boy or girl can build. Price 5/-

No. 2 Dinky Builder Outfit
The No. 2 Dinky Builder Outfit contains a wide selection of parts primarily intended for the construction of realistic groups of miniature modern furniture. The small table lamp and shade that are included add greatly to the realism of these groups, particularly as the lamp can be lighted from an ordinary flash lamp battery. The coloured instruction leaflet gives examples of 7 furniture groups, but to an enthusiastic model builder the possibilities of the Outfit are practically inexhaustible. Price 7/6

MECCANO DINKY BUILDER
Manufactured by Meccano Limited, Binns Road, Liverpool 13
Electricity is the most wonderful force of the age in which we live.

Learn some of its marvels by means of experiments with a Meccano Elektron Outfit.

No. 1 MECCANO ELEKTRON OUTFIT
Magnetism and Static Electricity
The No. 1 Outfit contains two powerful Bar Magnets and a reliable Magnetic Compass, together with everything necessary for the carrying out of a series of fascinating magnetic experiments. In addition there are materials for experiments in frictional or static electricity, and for the construction of an Electric Compass and two forms of Electroscope.

Price 6/6

An Elektron Outfit will open up to you a fascinating hobby of endless variety.

No. 2 MECCANO ELEKTRON OUTFIT
Magnetism, Static and Current Electricity
The No. 2 Elektron Outfit contains all that is included in the No. 1 Elektron Outfit, with additional parts that enable a splendid series of experiments in current electricity to be performed. Among these parts are a Horse-shoe Magnet, and Coils and Yokes for the construction of Electro-Magnets that can be used in building a real Electric Bell, and a Buzzer for use in an electric telegraph system. A specially-wound coil and other necessary parts are supplied for assembling into a splendid Shocking Coil that will give hours of fun and excitement.

Price 21/-

Visit your dealer to-day and ask him to show you one of these wonderful Outfits.

No. 1A MECCANO ELEKTRON ACCESSORY OUTFIT
An Accessory Outfit that converts a No. 1 Elektron Outfit into a No. 2 is also available.

Price 14/6

The apparatus and chemicals included in the Meccano Elektron Outfits can be obtained separately. Ask your dealer for the Elektron Folder giving a list of Elektron parts, or write for a copy to the address below.

MECCANO LTD., BINNS ROAD, LIVERPOOL 13
The Flat Earth Fallacy Again

I have no doubt that many of my readers remarked the death near Bath a short time ago of a man who had spent 50 years in trying to prove that the Earth is flat. When only 20 years of age, he took an oath to his father that he would do this, and for the rest of his life he studied the skies, spending his nights with instruments in his garden as that was going to bed.

It is astonishing to find that this flat earth fallacy crops up in every generation. It was natural for our earliest ancestors to think that their home was flat, for they were unable to travel beyond a certain limited region, and could not picture the Earth as a whole. As soon as Man began to examine his home more closely, to travel farther afield, to watch eclipses and to study the Sun and the stars, the conviction grew that actually it is shaped like a ball. There are many proofs of this, most of which will be known to my readers. One of the most interesting, with which they are perhaps not so familiar, is a long-distance photograph recently taken in South America on a plate sensitive to infra-red rays. This shows part of the Pampas, the great grassy plain east of the Andes, and in it the distant horizon is distinctly seen to be curved, exactly as required by the belief that the Earth is roughly spherical in shape.

Perpetual Motion a Delusion

I am often surprised to realise how many illusions are still cherished, in spite of the wonderful advances that have been made in scientific knowledge. For instance, scarcely a month goes by in which a scheme for perpetual motion is not submitted to me by some enthusiast. The impossibility of achieving this has been proved many times, but belief in it still persists. The favourite idea is the unbalanced wheel, which is kept in motion by waves that change their position as it rotates. There must have been thousands of repetitions in some form or another of this device, but none of them has worked, for the simple reason that the weights have to be raised to the level from which they fall, and this absorbs all the energy produced.

In another form of this fallacy a dynamo and a motor are coupled together so that the dynamo produces the current required to drive the motor, and the motor in return drives the dynamo. Unfortunately this pleasing co-operation demands a perfect dynamo and a perfect motor, with no waste of energy from friction or the production of heat. These of course are impossible, but even if the scheme were feasible, there would be no surplus energy that could be applied to practical purposes.

All other schemes also have failed, and it is safe to say that no perpetual motion machine ever will work.

Airways in 1935

In view of the extraordinary developments of aviation at the present day, it is difficult to realise that it is little more than 30 years since the Wright Brothers succeeded in making the first flight in a heavier-than-air machine. There is no doubt that the world as a whole is becoming more air-minded. Fears and prejudices are passing away, and the idea of travel by air is becoming generally accepted. It is rash to prophesy, but I cannot help thinking that 1935 may well mark the beginning of a great forward movement which, in the end, will result in the air becoming a great highway ranking equally in importance with roads and the sea.

It is the outcome of last year that has caused me to look ahead in order to see what the prospects are for aviation in 1935. The wonderful flight to Australia of Scott and Black in their D.H. 'Comet,' and the equally remarkable return flights to Australia and the Congo Free State of a second machine of this type, have shown how reliable high speed aeroplanes are. The speed-up of the Imperial Airways services, now extended to Australia, is another indication of the progress that is being made, and soon it will be possible to fly in comfort half the world in little more than a week.

I scarcely expect that a trans-Atlantic aeroplane passenger service will be established this year, but it may become possible to cross the North Atlantic Ocean in an airship. Regular flights by German airships to South America were made last year and are to be repeated this year, and in preparation for extensions a new airship base is to be established at Frankfurt.

Asbestos Gloves for Readers

The interesting illustration on this page gives a convincing proof of the wonderful heat-resisting powers of asbestos. This mineral cannot take fire and is a very poor conductor of heat, and many startling feats similar to that shown in the photograph can be performed with the aid of the protection it gives. It is invaluable in fire prevention, for an asbestos lining of asbestos makes a room or building practically fireproof, and screens or clothing made of asbestos are helpful to fire fighters.

Other uses for asbestos are suggested in the "Of General Interest" pages of this issue. No doubt many of my readers have interesting ideas on this subject, and by the kindness of Bell's Asbestos and Engineering Supplies Ltd. I am able to offer 12 prizes, each consisting of a pair of asbestos gloves, for the 12 most original practical suggestions for uses for asbestos in any form. Suggestions from home readers should be forwarded to reach me not later than 28th February, and the closing date for those overseas is 31st May.
In this article we describe an interesting system of printing in colours that is finding increasing use in the production of showcards, posters, and similar work in which a bright colourful design is required. The system, known as silk screen printing, and we are indebted for our information to the courtesy of British Silk Screen Printers (1933) Ltd., Liverpool. The silk screen method of printing is not really a new idea, for a somewhat similar process was used thousands of years ago by the ancient Egyptians and Chinese, who employed it in certain kinds of reproduction work. Later the monks in this country obtained some of the beautiful effects that we find in their manuscripts by a method that is closely allied to the modern silk screen process.

The fundamental difference between silk screen printing and the more usual multiple colour printing systems is that no printing blocks are used, and the finished work can be produced in any number of pure colours. The work done by the silk screen process is very fine, and the unlimited variety of beautiful colour schemes that can be introduced are exceptionally pleasing. An additional advantage is that the process can be used on almost any kind of material, including paper, glass, rubber, canvas and metal, and as the finished work is water-proof, a print can be washed when it becomes dirty, and its beauty restored.

Silk screen printing has been in use in England for some years, but it is only recently that it has been adopted to any great degree. Modern silk screen operators have improved the process considerably, and it is now used to a considerable extent for the making of very fine high-class coloured reproductions.

Essentially the silk screen process consists of applying paint to paper, or some other printing surface, through a taut sheet of silk, or a silk screen as it is named, the paint being pressed through the silk by a heavy flat rubber squeegee. The actual operation of squeegeeing may be done either by hand or on specially made machines. Cellulose paint is used for printing on glass or metal, and lead free oil paint for printing on paper and cardboard.

The silk used for the screens is specially made for the purpose, and although it is expensive, the price averaging about 25/- per yard, its life is very extensive, and if carefully handled a screen will give from 50,000 to 60,000 impressions. For cheap work muslin is sometimes substituted for silk, but the resulting prints are very rough in comparison with those produced through silk.

In order to produce a definite design in the finished print, it is necessary to arrange matters so that the paint can pass through the silk screen only in the required places. There are various methods of effecting this. Sometimes a stencil, made either of paper or of a special material known as pro-lin, is cut by an artist, and attached to the underside of the silk. Another method consists of applying to the silk itself a filling paste composed of cellulose or other suitable material. The "filler" stops the mesh of the silk except in those parts where it is desired to let the colour through to form the design.

For certain classes of work the stencils are made by a photographic process. In this the silk is coated with
gelatine rendered sensitive to light by a solution of potassium bichromate. The required design for the stencil is drawn by an artist either on transparent paper or on a sheet of glass, the portions of the design that are to be "stopped," so as to form a barrier to the light, being painted either with black ink or some other opaque substance.

The design thus produced is known as a "positive," and it is placed in contact with the silk screen in a frame of very similar type to an ordinary photographic printing frame, and then exposed to daylight. The parts of the sensitive gelatine that are protected from the light by the opaque paint on the positive remain unaffected, but the parts that the light reaches undergo a chemical change that renders the gelatine insoluble in water. After exposure the silk with its gelatine coating is placed in a dish of hot water. The result is that the parts of the gelatine that were protected from the light dissolve and are washed away, leaving on the silk a perfect stencil of the design.

After drying, the silk is printed through with a flat squeegee in the manner already described when using a paper stencil.

So far we have dealt with designs printed in one colour only. In printing, say, a showcard in several colours, the method of operation is the same as that when printing in one colour, but a separate prepared silk screen is required for each colour in the artist's original design.

To produce a showcard in three different colours such as yellow, red and blue, the first step is the making of a full size design in colours. This is done by a skilled artist, and everything he paints in his small original will be reproduced exactly in the finished showcard. If the printing is to be done through an ordinary cut-out stencil, the artist's original is passed to a stencil artist who then cuts a separate stencil, either in paper or pro-film, for each different colour in the original design. This means that one stencil will be made including all the yellow portions of the design, a second stencil of all the red parts, and a third of all the blue portions. Every part of the original full size sketch prepared by the artist is therefore included in one or other of the three stencils.

The stencil cutter's work is very highly skilled, and plays a big part in ensuring the fine quality and beauty of the print. As a separate stencil is needed for each separate colour required in the print, as many as 12 or more stencils are used in producing an elaborate design. Once the stencils have been made, however, a great number of prints can be produced, so that the comparatively high original cost is negligible provided that a reasonable quantity of prints are required.

To print a three-colour design three silk screens will be required, each screen being simply a piece of special Swiss silk of extremely fine mesh. The silk is somewhat larger than the size of the showcard to be printed, and it is held taut on a special stretcher frame, which is pivoted on a peculiar type of hinge at one end to the work table of the printing bench. Each of the three screens is fitted with one of the prepared stencils, which is attached to the silk on the underside so that the stencil will be next to the paper when the print is made. Paper stencils are attached to the silk by cellulose, but stencils made from pro-film contain a shellac adhesive and are attached simply by pressing them to the silk with a hot iron.

When the stencils are affixed to the screens, the sheet of paper or card to be printed is carefully adjusted in position beneath the first screen, which we will suppose to be that bearing the stencil of the yellow portions of the design. After the stencil is fixed, the surrounding portions are filled in with green filler. The screen is then lowered on to the paper, and the paint is forced through the silk by drawing the flat rubber squeegee across. The paint can penetrate only at those parts where the stencil is perforated, or the silk is not stopped by filler paste. The screen is then raised, and the paper, which now bears a reproduction of the yellow parts of the design, is transferred to special drying racks. When the first impression is quite dry the paper is placed under the second screen to which the stencil of the red parts of the design is fixed, and so on to the third screen. When the three colours have been applied an exact replica of the original

(Continued on page 94)
Grinding and Polishing of Plate Glass

There are many interesting features about the manufacture of glass, one of which is that although the craft is perhaps as old as civilisation itself, it has seen remarkably few changes in essential methods. Ordinary glass consists principally of quartz sand that is heated to a high temperature in a furnace until it has melted, and is then drawn into sheets, cast into slabs, or blown and pressed into various forms. Plate glass is rather more difficult to make. One largely used method of manufacture consists of taking the molten glass from the furnace, pouring it on to an iron or steel casting table, and passing a metal roll over it while it is still molten in order to make a slab of glass of uniform thickness. The slab is then placed in an annealing oven where it is kept cool gradually to room temperature, so as to prevent the development of strains or brittleness that would render it unfit for its special commercial uses.

The slab of glass thus formed is then ready to be ground and polished. For this purpose it is placed on a circular grinding table and its surface is ground to smoothness by abrasives pressed to it by means of hard wood-covered discs and felt pads to which sufficient weight is applied to produce the required result. When both sides have been treated in this manner, and the necessary polish and transparency produced, the glass is washed and cut as required.

The illustration on the next page shows a large grinding and polishing machine. This consists mainly of a large circular cast-iron table, 25 ft. in diameter and weighing approximately 37 tons. It is mounted on a cast-iron spider 11 ft. in diameter and weighing some 4½ tons, fixed to the upper end of a vertical cast-steel shaft 14 ft. in diameter, supported by special bearings. The superstructure over the table, carrying the large wood-covered discs for grinding and the weighted felt pads for polishing, consists principally of 15-in. structural I-beams supported at each end by cast iron stands. The wood-covered discs and felt pads, which weigh several thousand pounds, are raised and lowered by means of hydraulic lifts that are suitably located for the purpose. The machine is working order weighs about 89 tons.

Swiss Electric Cable Railway

A cable railway that has been opened in Switzerland between Schwyz and Stoos is 1,489 yds. in length and is operated by electricity. It is provided with carriages that hold 50 passengers and are driven at a speed of about 4½ m.p.h. The cable that hauls the carriages is 3½ mm. in diameter.

A Ship with Boilers on Deck

Among recent schemes for increasing the efficiency of vessels devoted mainly to the carriage of cargo is one in which the boilers are situated on the main deck. Two vessels have been equipped in this manner, and one of them, the Norwegian ship "Becas," visited this country not long ago. It is claimed that by placing the boilers on the deck more accommodation can be provided for cargo and passengers, and also that a saving in building costs can be effected. A further advantage claimed is simplification of the operations of coaling and discharging ash.

In the "Becas," which is a vessel of 2,500 tons, the boilers are supported on special girders and are situated over the forward end of the engine room. The coal bunkers are accommodated between the decks near by, except one that is arranged over the boilers. A saving of labour is made possible in that it is not necessary for the coal to be trimmed periodically, as this is done automatically by gravity. Conditions are better for the stokers on account of the better ventilation that can be provided, the boiler house does not become so hot while at the same time there is good natural lighting. The "Becas" has a cruising speed of about 12½ knots.

Extensive Port Improvement Scheme

The L.M.S. Railway announce that important schemes, at a cost of over £85,000, are to be put in hand immediately for the further improvement and modernisation of the West Coast fishing port of Fleetwood. The two main features of the scheme are the provision of six electrical belt conveyors for coaling trawlers, and the conversion of the whole of the existing hydraulic plant at the port to electric power. In addition, piping accommodation will be constructed to take an extra 621 railway wagons. The scheme involves also practically the complete reconstruction of the wooden piers at the north end of the dock where the very extensive Isle of Man traffic is dealt with.
Diesel Engines for Lifeboat Use

The interesting announcement is made that the United National Life Boat Institution have decided to install two high speed heavy oil engines in a lifeboat that is shortly to be built. The Institution already possesses 123 motor lifeboats, but all of these are fitted with petrol engines which, until recently, have been superior to heavy oil engines in regard to speed and lightness. Much progress has been made in the design of small Diesel engines, however, and now engines of this type are available that are suitable for small craft of all kinds. The Life Boat Institution's decision has been arrived at as the result of a series of experiments carried out with a 6-cylinder type engine developing 85 b.h.p. at 1,600 r.p.m. and weighing 23½ cwt. This engine was installed in a reserve lifeboat, and has been used at various places while the regular boats were being overhauled. It is now permanently stationed at Yarmouth in the Isle of Wight.

170-Mile American Aqueduct

A big aqueduct that supplies San Francisco with water collected from an area in the Sierra Nevada 170 miles away, was completed and opened at the end of last year. The water is obtained at an altitude of about 4,660 ft. above sea level and is stored in the Hetch-Hetchy and Lake Eleanor reservoirs, the drainage area being about 713 sq. miles over which an average of 40 in. of rain falls every year. The scheme, which was started in 1910, provides San Francisco with 800,000,000 gallons of water every day, the feed to the city being by gravity owing to the height of the reservoirs.

250-Ton Hammerhead Crane

The hammerhead crane that has been installed at the Puget Sound Yard of the United States Navy Department has a tower 125 ft. high and is capable of dealing with loads up to 250 tons. The revolving beam is 317 ft. long, the cantilever arm is 196 ft. 6 in. long from the centre of rotation and the counterbalancing arm is 120 ft. 6 in. long. The crane is equipped with two main hoisting trolleys that travel along the beam, each having a capacity of 125 tons and a working radius of 125 ft. There are also three other trolleys, one capable of lifting 30 tons, another of raising 5 tons each at a high speed. These trolleys all have a working radius of 184 ft.

An interesting feature is a 25-ton traveling crane provided in a two-storey machinery house, situated on the counterbalancing arm and used to handle the machinery. All the movements of the hammerhead crane are carried out by electric power.

A New Thames Oil-Electric Tug

An oil-electric tug of modern design has recently been put into service on the Thames, where it is used for handling barges. The new tug is 77.5 ft. long and 19.5 ft. broad, and is fitted with a propelling motor that develops 400 b.h.p. at 100 r.p.m. Current for the motor is provided by two four-cycle single-acting airless injection engines each of which is coupled to a generator with an output of 165 kW at 530 r.p.h. The engines are controlled from the bridge.

Bearings that Carry Load of 400 Tons

It is interesting to learn that the bearings of the bridge that recently has been built at Barendrecht in Holland, and a Meccano reproduction of which is described on page 113 of this issue, are of British manufacture. There are 432 bearings on the bridge, the lift span of which is 460 tons in weight, and they were made by Ramsome and Marles Bearing Co. Ltd. Some idea of the size of the main bearings can be gained from the fact that each has a bore of nearly 12 in. and is capable of carrying a load of about 70 tons. The sheaves supported by these bearings rotate at 6 r.p.m.

Timber Compared with Concrete for Bridges

In the United States and Canada there are very many timber bridges and when these reach the end of their useful career they are almost invariably replaced by structures of concrete or steel. An interesting exception has occurred recently at York Village, Maine, where a timber bridge built in 1761 has been replaced by another timber structure of almost exactly similar design. The new bridge, which is 22 ft. wide, is nearly 550 ft. long, made up of one span of 30 ft. and 13 spans of 17 ft. The main reason for deciding upon timber for the new bridge was that whereas a concrete structure would have cost nearly $8,000, the wooden bridge cost only $6,200. This would be sufficient to meet the cost of maintaining the bridge in repair and to leave over enough to build a new bridge in about 50 years, by which time it is probable that a concrete bridge built now would be inadequate to deal with the traffic.

Opening of the Iraq Pipeline

Last month the ceremonial opening took place of the 1,150-mile pipeline that the Iraq Petroleum Company have constructed between their oilfields at Kirkuk and the two terminals of Tripoli, Syria, and Haifa in Palestine. The ceremonies were five in number and took place successively in the five countries—Iraq, Syria, Lebanon, Palestine, and Transjordan—through which the pipeline runs. We hope to publish a fully illustrated article on this interesting work in an early issue of the "M.M."

A Yugoslavian Suspension Bridge

After 4½ years' work, an important suspension bridge with a span of 804 ft. has been built across the River Save between Belgrade, the capital of Yugoslavia, and Zemun. The bridge is 1,967 ft. in length, including its approach viaducts, and has cost about $850,000. In connection with its construction an extensive scheme of street clearance and reconstruction has been proceeded with, and on one side of the river a modern highway carried on an embankment has been built for more than two miles over marshy ground.

Photo-Electric Cell for Lift Bridge

An interesting method of informing the operator when the 300 ft. span of a bridge is exactly lined up has been developed in the United States. It consists of placing a photo-electric cell on the end of the span so that when it is exactly in position a beam played on it from one of the piers makes a green light show in the control room.
ON first thought the idea of pumping water up to a height and then utilising this water in a water-turbine seems absurd; in fact it looks like an attempt at perpetual motion. A study of such a plant shows that the idea is sound, however, and in this article I shall describe the Swedish Sillre hydro-electric plant, which works on this principle. In addition to being the first water pump-storage plant in Sweden, it operates on the highest head developed in that country.

The Sillre plant is situated on the Indal River, some 38 miles from the outlet of the river to the Gulf of Bothnia, and is owned and operated by the Royal Board of Water Falls. It is one of several that are known collectively as the Norfors Power Supply Group, the name being based on that of a line hydro-electric installation at Norfors, on the Umea River, about 160 miles north of Sillre. At Norfors the fall of the river consists of a series of rapids, and a portion of these is shown in one of the illustrations to this article. As the operation of this plant has a bearing on that at Sillre I will outline briefly its chief features.

The regulation dam is built across the Umea River at the top of the rapids, and is 750 ft. long and about 20 ft. high. It determines the head water level and acts as an overflow weir. During the lumber season great quantities of timber are floated down the river to sawmills, and to facilitate the passage of the logs about 150 ft. of the dam is built about 5 ft. lower than the remainder. The intake dam near the power house is built across the Tvär River, which joins the Umea River at Norfors. It is a multiple arch structure of four spans each 40 ft. wide. The penstock inlet adjoins the intake dam, and from there the water is carried through two steel penstocks each 12 ft. in diameter and embedded in concrete, to two 13,000 h.p. vertical turbo-alternator sets. At present the turbines are operating on a head of 90 ft., but eventually this will be increased to 140 ft. and the output of each turbine will then be 25,000 h.p.

The water wheels or runners of the turbines are 8 ft. in diameter and are of cast steel, and the gates that admit the water to them are automatically controlled by oil pressure governors. The speed of the turbines varies according to the load. A decrease in speed causes the governor head to open the main regulating valve, admitting pressure oil to the opening side of the servo-motor regulating the gates, which then open and allow a greater quantity of water to pass until the turbine has regained its normal speed. If the speed rises above normal the servo-motor closes the gates, thereby decreasing the supply of water and reducing the turbine speed to normal. The turbines are direct-coupled to the alternators by means of vertical shafts, 85 ft. high. The alternators are three-phase machines each of 12,500 kVA capacity, and generate at 6,600 volts, 50 cycles. A lift provides communication between the turbine floor and the alternator floor.

The flow at Norfors ranges from 1,600 cu. ft. per sec. to 88,000 cu. ft. per sec., and as there is no reservoir there it is not possible to impound the flow and use the water according to the varying demand for energy. At holidays and other slack periods when the demand is low the energy derived from the surplus water is transmitted to the Sillre plant, where it is used to raise water from the Indal River to a storage reservoir 650 ft. above the river level. By utilising in this way about 9,000,000 kWh of surplus energy a year from Norfors, it is possible to obtain at Sillre an additional output of over 5,000,000 a year. Sillre is thus used as a peak and reserve power station.

Behind the first hills in the lower illustration on the next page there is a plateau with a system of lakes of which the three largest are regulated, giving a total storage capacity of 1,381 million cu. ft. The original level of the lower lake has been raised 13 ft. by the construction of a dam across the outlet from the lake. This dam permits a total of 18 ft., or approximately 706 million cu. ft., of
water to be withdrawn. The storage capacities of the other two lakes are 165 million and 510 million cu. ft. respectively, and the levels of these lakes are regulated by dams built to facilitate log-floating.

The regulation dam is of the rock-filled type and is 900 ft. long, and has a maximum height of 26½ ft. It has two outlets, both placed near the middle. One is for log-floating and is 13 ft. wide, and its depth is adjustable so that no more water than that required to float the logs can escape. The other outlet, for flood water, has an opening 4 ft. wide and 9 ft. high, and is provided with an ordinary sluice gate.

The diagram on the previous page shows how the water in the lakes is used by the Sillre station, 650 ft. below, before being allowed to pass into the Indal River. Leaving the lake nearest the power station the water enters a tunnel 6,500 ft. long and of a cross-sectional area of 54 sq. ft. that has been blasted through the hill. At the other end of the tunnel the water passes into a penstock 3,000 ft. long and of 6 ft. bore through which it descends to the turbines at the power station. At the junction of the tunnel and the penstock there is a butterfly valve to shut off the water supply to the penstock when necessary, and in an emergency this valve can be operated by push-buttons in the power station.

The upper part of the penstock passes through cultivated ground in the village of Sillre. It is laid in a cutting lined with concrete and covered over with earth. The bottom of the cutting is provided with a layer of stones to enable all ground water to drain away. Then for about 2,000 ft. of its length the penstock is laid in a steeply inclined tunnel blasted in the rock, and the space between the walls and the penstock is filled with concrete. Thus far the penstock is built up of steel plates only ¼ in. thick. This thickness is quite sufficient to withstand the water pressure in the upper, practically horizontal part of the penstock, but it would be most inadequate in the portion passing through the tunnel if it were not for the fact that the tremendous pressure of the water is transmitted through the concrete filling to the surrounding rock, which is of such a nature that it can easily withstand the pressure. The lower part of the penstock is in the open and is carried on cradles 20 ft. apart. It is of 4 ft. 10 in. bore, and is constructed of ½ in. steel plates.

Viewed from the surrounding high hills the power house seems insignificant, but actually it is 90 ft. in height. It has been built to accommodate three power units, of 6,000 k.w., 2,500 k.w. and 8,000 k.w. respectively, but at present only the 6,000 k.w. set is installed. It consists of a pump, turbine and alternator operating on the same vertical shaft, and the other two units will be of the same type.

The lowest portion is the pump, which is of the two-stage centrifugal type, and is capable of raising 24,000 to 37,000 gallons of water per min. to a height of 750 to 600 ft. respectively, when operating at a speed of 600 r.p.m. The impellers are of cast bronze and 54 in. in diameter. The turbine that forms the middle portion of the unit has an output of 8,600 b.h.p. on a head of 65 ft. when running at 600 r.p.m. On a maximum head of 650 ft. it will develop 10,080 b.h.p. The runner is of cast bronze and is 50 in. in diameter. The turbine is provided with an oil pressure governor that keeps the speed constant at different loads. The upper part of the unit consists of a synchronous three-phase alternator of 7,000 kVA capacity, that generates at 6,600 volts, 50 cycles. It is provided with a water-cooled oil-lubricated thrust-bearing that carries a load of 55 tons, corresponding to the weight of the rotating mass of the whole unit plus the unbalanced hydraulic pressure on the impeller impellers and turbine runner.

The outlet or regulating valve to the pump and the inlet valve to the turbine are both of the streamline type. These valves are hydraulically operated by means of a small servo-motor, the operating valve of which is actuated by a small electric motor, controlled by push buttons on the switchboard. These valves can be operated manually if necessity should arise.

The high efficiency of the power unit was demonstrated at the official tests, when the pump attained a maximum efficiency of 86 per cent. and the turbine of 91.6 per cent.

It might be imagined that the operation of such a large and powerful plant would require a large staff of attendants. The Sillre plant can be operated by one man, however, the opening and closing of all valves being effected automatically by push-buttons and relays.
Where the Tides Begin

It is interesting to find that the tides that pile the water of the sea on our shores are now believed to start far away in the Pacific Ocean, which is the Earth's largest uninterrupted mass of water. If the Earth were uniformly covered with water, the great wave caused by the attraction of the Moon of course would simply travel directly round our globe from east to west, but the immense land masses of the continents get in its way and break it up into smaller wave fronts, so that actually tides may flow in from all points of the compass. The obstacles met by the wave also cause it to lag behind the Moon, the pull of which starts it on its long journey.

The tidal wave that reaches our shores passes the Cape of Good Hope about 20 hours later. The presence of the land mass of South America then bars its direct progress westward, and it travels via the Atlantic Ocean to Cape Clear, on the south-west coast of Ireland, where it arrives 18 hours afterwards. There it divides, a part passing on each side of Ireland. The two fronts enter the Irish Channel from the north and south respectively, and meet in Liverpool Bay.

The two parts of these tidal waves that are not diverted into the Irish Sea are separated by Great Britain, round which they curve to meet in the North Sea. This explains why the time of high tide is practically the same at Leith and London, while at Hull, approximately half way between the two, it is four hours later. The wave that brings high water to London Bridge left the Pacific 24 days earlier, and actually it is a second wave, two days' old, that causes the flood tides at Leith and at Hull.

There are striking differences in the heights of the tides at British ports. Off the Ayrshire coast of Scotland the height is only 8 ft., but the tidal wave rushes up the funnel-shaped Bristol Channel to a greater height, sometimes reaching 33 ft. The greatest peculiarity of English tides is seen at Southampton, however, where there is in effect a double tide, one due to the arrival of the tidal wave flowing between the coast and the Isle of Wight, and the other to the passage of the wave up the Solent, after it has passed round the island.

The Hardest Metal Surface Known

I wonder how many of my readers know what is the hardest metal surface known to Man. Extraordinarily hard alloys of steel and iron have been produced, and these have been given remarkable wearing surfaces by various processes; but the hardest metallic surface of all is obtained by a simple process in which special irons and steels are treated with nitrogen in what is called the "nascent" state. This word simply means newly born, and describes a gaseous element at the moment when it has been liberated by the decomposition of a compound containing it. It is then far more active chemically than when collected and stored. The process of nitriding gives a very hard coating when heated with nitrogen newly formed in contact with it by the splitting up of ammonia gas. The process of nitriding, as it is called, is carried on at a temperature between 480 deg. C. and 680 deg. C., and the nitrided iron cannot be filed, and indeed is so hard that it will cut glass and scratch quartz. It is resistant to the corrosive action of air, steam and water and of course is not readily worn down by friction. The hardest part of the material is at the surface, but as the nascent nitrogen penetrates into the iron, the hard case is merged progressively into the softer core and there is no danger of the hardened surface peeling off.

Shall we ever be able to See Atoms?

There seems to be no limit to the efforts of scientists to probe more deeply into the mysteries of atoms and molecules. Until recently we were told that we should never see a molecule with the most powerful microscope, for light waves are too coarse to reveal such minute objects, even with the aid of the ultramicroscope, which increases the number of refractions inside a glass tube so that the images appear as a series of bright points on a dark background. Now, however, it is possible to make many small particles visible on a dark background by means of electrons. These particles are produced by cathodes of vacuum tubes. They cannot be deflected by means of lenses, as light waves are, but their paths can be changed in a similar manner by means of magnets. This has been turned to good advantage in the electronic microscope, in which the electrons from any body emitting them are brought to a focus by passing them between the poles of an electro-magnet, which acts on them as a convex lens does on light rays. A photographic plate placed at the focus then records the appearance of their source, for the rays act as readily as light on the sensitive emulsion.

As yet the electronic microscope is in the experimental stage, but already photographs of incandescent wires emitting electrons have been obtained. The hot nickel cathode of a vacuum tube has been photographed in the same manner, and the individual crystals
of the nickel can be seen in the picture obtained. Possibly further experimental work will produce a microscope that will actually reveal to us the molecules and atoms of which the crystals are built up, although these are very much smaller.

A Crab that Wears Fur Gloves

Great concern has been caused recently in certain quarters by a threatened invasion of Great Britain. The prospective invader is only a crab, but its appearance in this country is dreaded because it carries with it a parasite that is responsible for an unpleasant lung disease that affects man and domestic animals.

The creature is about the size of an ordinary shore crab, and is known as the woolly-clawed crab, or the mitten crab, because it has a little brown pad of velvet-like material on its fore claws. Its home is in the estuaries and rivers of China and Japan, but it has spread to Europe, probably in the water ballast tanks of ships. It appeared in the River Elbe about 20 years ago, and has now reached the Humber estuary uncomfortably near our own shores. Although the prospect of an outbreak of the disease associated with it may be remote, its presence is undesirable because of its menace to fisheries, for it feeds ravenously on the crustaceans and other animals that form the natural foods of fishes, and increases at an astonishing rate when established in the congenial surroundings of estuaries and the lower reaches of rivers.

Fireproof Gloves and Clothing

The middle illustration on this page shows a man wearing an asbestos suit, about to enter a burning building. The wonderful material of which his clothing is made gives him complete protection, for in addition to being non-inflammable it is a non-conductor of heat. Asbestos is a complex mineral found in Canada, Australia, South Africa, and other parts of the world. It contains fibres that can be separated and after special treatment woven into a soft fabric that is completely indestructible by fire. It is a curious fact that asbestos contains magnesium, a metal which in the form of wire or ribbon, burns fiercely with a brilliant white flame when ignited.

In the illustration here reproduced, the man entering the burning building is protected by a suit, gloves, boots and helmet, all made of asbestos. Thus he is completely encased and can safely remain for a minute at temperatures up to about 1,500 deg. Cent. The reason for this devise is the breathing apparatus. The illustration on the Editorial Page of this issue also shows in a striking manner the protective value of asbestos. The girl shown has scooped up with a hot coal from a furnace and is holding them in the palms of her hand without the slightest danger or discomfort, thanks to the asbestos glove that she is wearing. The glove shown is the Bestobell "Bellmuni" made for the Royal Air Force by Bell's Asbestos and Engineering Supplies Ltd., and is so efficient that its wearer can take red-hot bars in his hand and hold them until they are cold. At the same time the glove is sufficiently flexible to enable its wearer to pick up between the thumb and first finger such articles as drawing pins laid on the floor. Gloves of this kind may help to save the lives of airmen trapped in aeroplanes that have crashed and caught fire.

Many other uses have been devised for asbestos in connection with fires and fireproofing. A small fire can readily be put out by enveloping it in an asbestos blanket, and firemen can use asbestos shields to enable them to approach burning buildings in comfort and remain there for considerable periods. Rooms protected by asbestos sheeting can be regarded as fireproof. In a test of the efficiency of asbestos for this purpose, a small wooden building of two rooms was erected. One of the rooms was completely encased in asbestos sheet, and remained intact when a fire was lit under the rooms, although the one that was not protected in this manner burned so furiously that it was completely destroyed by the flames.

A Discovery in an Oilcan

The importance of filtering oil before passing it into the bearings of machinery was demonstrated recently when an old oilcan that had been in use for many years at a paper mill was returned to the makers for cleaning and repair. The oilcan was one of the well-known "K" type made by Joseph Kaye and Sons Ltd., Lock Works, Leeds, and was fitted with their special filtering device. When the oilcan was examined it was found that the whole of the interior was completely filled with solid matter held back by the filter, which otherwise would have passed with the oil into the machinery. The retained matter consisted principally of paper pulp, and formed the hard papier mache block illustrated at the top of this page. Other oilcans of this type received back from the mills for cleaning and repair also were found to contain a certain amount of the paper pulp. If all this foreign matter had been allowed to pass into the bearings of the great paper machines a great amount of damage might have been done.

Wasp sent across the Atlantic Ocean

Few people show great anxiety to become the possessors of a swarm of wasps. At first sight, therefore, it is surprising to find that the Canadian Government recently took the trouble to import a large consignment of live wasps and larva from Iszak, a village in Hungary, and even arranged air transport for part of the journey of these insects from the Old World to the New. The apparently strange desire to own as many wasps as possible seems to have caused great excitement in Iszak.

The reason for Hungarian wasps is that the insects are a black, long-winged variety with a great liking for the tsetse fly, the carrier of sleeping sickness. They have already done excellent work in exterminating this fly from certain districts in Canada, and next summer a wasp farm is to be organised at Iszak on behalf of the Canadian Government.
Table-Top Photography
Some Hints on a Fascinating Hobby

THE most remarkable feature of photography as a hobby is its enormously wide range. It can be practised all the year round, indoors as well as out in the open, and there is practically no limit to the variety of subjects.

Of the many indoor branches of the hobby, table-top photography is one of the most fascinating. It consists of arranging miniature scenes in such a manner that photographs of them appear to have been taken from life. It is easy to build up realistic scenes from simple materials that are available in every home. A lump of coal and some sand, for instance, make a very real-looking mountain; while a few carefully selected twigs, with leaves if it is a summer scene, or without leaves for a winter effect, provide trees and hedges. A rocky mountain path can be represented realistically with small pieces of stone or brick and sand, and a country roadway with brown paper and sand. Sawdust dyed green with ordinary clothes dye can be used for grass, and cotton wool suitably coloured makes excellent hedges. These few examples will serve to indicate the possibilities of scrap materials in the hands of an ingenious boy or girl, and it is great fun to experiment with different substances and compare the results obtained.

The most important point to remember in arranging a scene is that all the models and component parts must be in keeping with the general scale of the scene. The whole effect will be spoiled if the resulting photograph shows, for instance, a horse twice the size of a motor car, or a man standing in front of a house that is less than his own height! However attractive a particular item may look, it must not be included if it is out of scale. It is easy to go astray on this point, and it is advisable to pay great attention to securing good proportion between the various parts of the picture.

One of the great difficulties of table-top photography in the past has been that of obtaining models small enough for the purpose. Now, however, owing to the introduction of Meccano Dinky Toys, this difficulty no longer exists. These splendid little miniatures are available in such a wide variety of subjects, and are so realistic in detail, that they supply at once the needs of most table-top photographs. The Dinky Toy motor cars and wagons lend themselves perfectly to the production of realistic road scenes; the trains provide material for railway photographs, and the liners and war vessels make it possible to produce harbour and coastal scenes in great detail. The aeroplanes, too, can be used to produce remarkably realistic flying scenes. An illustrated list of the various Meccano Dinky Toys should be obtained from a Meccano dealer so that the range of subjects can be seen at once.

Some kinds of table-top photographs do not require the use of models, and a good example of this type is the accompanying “sunrise on the mountains” picture. This very striking scene consists of nothing more than a carefully arranged heap of alum placed on a small stage with a dark cloth for a background. The “mountains” were illuminated by burning a piece of magnesium ribbon at a suitable angle to produce the required lighting effect. Another example of a similar kind is the photograph of the crescent moon shown in the heading to this article. This is simply a photograph of an ordinary tennis ball. The ball was set up against a black backcloth and illuminated...
from one side by burning magnesium ribbon.

It must not be thought that it is necessary to be an expert photographer, or to possess an expensive camera, in order to indulge successfully in table-top photography. It is possible to produce splendid results with a small film camera, and indeed the main advantage of a more costly camera is that it simplifies the operations involved.

An essential requirement for most table-top scenes is a stage or baseboard, which should be about 3 ft. by 2 ft. A cardboard background of the same size will also be necessary. For pictures of interiors the background may consist of a piece of buff-coloured cardboard on which is drawn or painted a simple sketch representing the wall of a room. For outdoor scenes a simple picture consisting of trees and hills is the most suitable. The stage or baseboard should be tilted slightly so that the rear is a little higher than the front.

In regard to the camera, the possession of one fitted with a focussing screen is a decided advantage in this class of photography. Accurate focussing is very important, and with a camera of this type the photographer is not only able to ensure that his picture is sharp, but also is able to study the general arrangement of the scene with greater ease than can be done with a non-focussing camera of the folding film or box type. To ensure a good sized picture that covers the plate or film, it is essential that the camera should be brought near the subject. This means that a camera fitted with double extension bellows that will rack out sufficiently to allow close-up work is the ideal instrument for the purpose. With a box form or other non-focussing camera, a supplementary lens or "portrait attachment" must be fitted to the ordinary camera lens. Such attachments bring objects at close range into sharp focus, and are readily obtained at small cost. Whatever type of camera is used, the best results will be secured by using a lens aperture of F/32 or even F/64.

One of the most important features in ensuring successful table-top photographs is good lighting. This requires careful arrangement, and conditions vary so much that only a few hints can be given here. If a scene is to be photographed indoors by daylight, the stage should be placed close to a window in such a position that the light comes from the side and slightly in front. When the photograph is to be made by artificial light, it is best to place the stage almost directly underneath the main light, and to have a second and rather less powerful light to one side and slightly in front of the scene, in order to avoid flat and uninteresting lighting. Shadows cast over the scene will subdue its boldness. A few experiments with different arrangements of lighting will provide a useful guide for future operations.

It is not possible to give definite instructions in regard to the length of exposure required, as this will vary according to the lighting conditions and other matters. Daylight is very variable, and it is best to work out the exposure with an exposure meter or calculator. The Wellcome or Imperial calculators are particularly useful for this purpose.

A good example of the use of Meccano Dinky Toys in table-top photography is shown in the lower photograph on the opposite page. In this case the materials were placed on a small card table about 2 ft. by 2 ft., and the background consisted of a sheet of white cardboard about 2 ft. long and 1 ft. wide, on which mountains and seas were roughly drawn in with grey, blue, and green paint. In making a background of this kind it is not necessary to put in fine details; indeed, the broader the effect the more realistic will be the resulting photograph. The houses shown in the picture are coloured illustrations of dolls' houses taken from a toy dealer's catalogue. The illustrations were cut out and glued to pieces of thick cardboard, and fitted with cardboard struts so that they would stand upright.

The fields were made up from Hornby Countryside Sections with a number of Hornby oak and poplar trees massed together in the background. Readers who do not possess any Countryside Sections will find that a good substitute is provided by a sheet of brown paper lightly sprinkled over with sawdust dyed green. This makes a very realistic field, and in the scene we are now considering the method was adopted for making the grass verge in the foreground. Dinky Toy motor vehicles, hikers, and animals complete the materials used in the picture.

The photograph was taken with a quarter-plate camera fitted with a focussing screen and double extension bellows. The camera was placed about 3 ft. from the scene, and a little to one side so that an angular viewpoint was obtained. It was also placed a few inches above eye level and tilted slightly so as to look down on the scene. For focussing, the words

(Continued on page 84)
A "Meccano-Built" Aeroplane

A new aeroplane that has recently been produced is described by "Flight," one of the leading technical aeronautical journals, as being built on the "Meccano" system of construction. The machine is a low wing two-seater cabin aeroplane and is known as the Martin-Baker MB1. The unique feature of its construction lies in the fact that it is built of numerous small pieces of tube that are bolted together so that in the event of damage, or for any other reason, any of these pieces can be replaced with little difficulty.

An interesting method of joining the tubes together in the after portion of the fuselage has been adopted. The two ends of the joint are pushed together, one slipping inside the other so that two holes in the outer one coincide with tapped holes in the liner. These are provided with nuts brazed to the inner surface of the tube, and the tubes are joined together by a stud that is screwed through, and on the end of which a washer is placed. The stud is made long enough for other struts to be bolted on to the end of it if necessary.

The MB1 is 28 ft. 10½ in. in length, 37 ft. in span, and 13 ft. 2 in. in span when folded ready for housing. Details of its performance are not yet available, but we hope to publish them, together with a fully detailed and illustrated description, in an early issue of the "M.M."

American Transoceanic Flying Boat

Pan-American Airways, the well-known American air line company, have recently equipped a Sikorsky flying boat for service to train pilots for long-distance ocean flights. The boat has been provided with additional fuel tanks that give it a range of 3,000 miles, in addition to a special fuel pumping feed, two-way radio and a direction finding device. At first flights will be made over well-known routes, but afterwards the boat will be taken to the Pacific coast of America. After this the boat will be used for experimental work in connection with a service across the Pacific from America to the Philippines and China that it is hoped to inaugurate in the very near future.

A Two-Stroke Aero Engine

A novel two-stroke aero engine is now being produced by a British firm known as Remtor Ltd. The engine, which has been named the Remtor "Meteor," is of the eight-cylinder air-cooled radial type and develops 50 b.h.p. at 2,500 r.p.m. It weighs 200 lb.

The engine is arranged so that the cylinders are gas-tight at both top and bottom. The mixture is fed through a liner voyage across the Atlantic, the tourists called at Gibraltar, Naples and Alexandria. Then, after a series of sightseeing tours from Cairo, they left Cairo in one of the airliners of Imperial Airways, flying via Khartoum to Nairobi, and obtaining wonderful bird’s-eye views while in flight of the scenery and wild life below. From Nairobi they made a tour by motorcar through the big-game country. The trip back to Cairo was made in one of the Nile steamers, and the return to New York by a liner boarded at Naples.

Races Round the World

The great interest aroused by the MacRobertson air races from Mildenhall to Melbourne has shown that such long-distance contests appeal to the public imagination, and in addition are valuable to the aircraft trade in stimulating sales. It is now stated that a French paper has decided to organise an air race round the world in 1936. No details have yet been issued, but if the race takes place, it will start at Paris, from where the course will lead to Japan and on to San Francisco. From there the machines will probably travel to Africa by way of Central America, and then back to Paris, while the others will reach Paris by way of New York and the Atlantic Ocean.

A suggestion has also been made that, to commemorate the improvements and erection of new buildings at the Liverpool Aerodrome at Speke, a race around the world should be organised by a Liverpool newspaper. Details of the proposed course cannot yet be given, but will be published as soon as possible, if the scheme is proceeded with.

New Names for Bombing Aircraft

The classification of R.A.F. bombers under two general types, day and night bombers, is to cease, four new names having been decided upon. Machines similar to the Hawker "Hart," for instance, will in future be termed Light Bombers; those similar to the Boulton and Paul "Overstrand," Medium Bombers; those similar to the Handley Page "Heyford," Heavy Bombers; and those similar to the Vickers "Vincent," General Purpose Bombers.

A D.H.34 air liner in flight. This machine is of a type that was extensively used by Imperial Airways several years ago and should be compared with the latest Imperial Airways machines illustrated in recent issues of the "M.M." Illustration by courtesy of de Havilland Aircraft Co. Ltd.
Improvements to African Aerodrome

Work is now nearly finished on the new airport buildings at the Rand Air Port, Germiston, near Johannesburg. The main building that is being constructed contains separate Customs, immigration, health, traffic and Post Office sections, and there are in addition three separate waiting-rooms for passengers, a large restaurant, airport administration offices, board room and control tower. This building costing approximately £22,000.

The roof is flat and provides seating accommodation for 5,000 people, who are thus able to view flying displays in comfort. The building is fitted with a 'public address system' that enables the traffic officers and other officials to hear in their own offices the announcements made by the control officer. The control tower is connected directly with the wireless station of the airport, which obviates the present necessity for all messages to come through the Germiston Exchange. The wireless masts are situated well away from the control tower and landing area.

An airman's clock that is probably the largest in the world is installed in the front of the building, and a loud-speaker telephone has been constructed on the arrival and departure platform to enable pilots to speak directly to the control officer practically from the control cabin of their aircraft.

The Government have decided to build a new meteorological station next to the administrative building.

Empire Air Services Now Duplicated

The weekly services on the India and Africa air-mail routes have now been duplicated. The effect of this is to give a twice-weekly service in each direction between Great Britain and Palestine, Egypt, the Persian Gulf, India, South Africa and Rhodesia, and the Union of South Africa; and four return services weekly between Great Britain and Egypt, which is served by both the India and Africa routes. The duplication on the India route is operative between London and Calcutta, and that on the African service between London and Johannesberg.

The first duplicate service from London for Johannesburg left the Croydon airport on 30th December last, with departures each Sunday and Wednesday thereafter. On the Indian route the first duplicate service arrived at Calcutta on 1st January, and the duplicate service on the African route is due to arrive next Sunday.

In regard to Johannesburg, letters arrive there at present each Thursday by the weekly service from London, and there is no return service until the following Wednesday. With the institution of the duplicated service it will become possible to catch a return air-mail to London each Saturday, also presenting a saving of four days.

Big British Air Mail Speed-Up

According to a speech made in the House of Commons a short time ago by Sir Philip Sassoon, the Under-Secretary of State for Air, extensive speed-ups and alterations are to be made on the Empire Air Services.

Sir Philip stated that it was hoped that soon Imperial Airways machines would operate a service to India in just over two days, while 2½ days would be occupied to East Africa, four days to South Africa and seven days to Australia. The services would also be much more frequent, and even four or five machines being timed to depart every week to India, three every week to South Africa, and two to South Africa and Australia. The scheme outlined also provides for extensive development of the ground organisation so that it will be possible for both passengers and mails to travel by night.

Another important section of the scheme is that all first-class postal matter will be carried by air, the cost of sending this being reduced to about 1½ per half ounce to anywhere in the British Empire. This compares favourably with the present rate of 1½ per half ounce for matter going by air to Australia, for instance. It will not be possible for any of these postal improvements to be put into effect until the beginning of 1937.

The Farnham F-360

The Farnham F-360, illustrated at the top of this page, is one of the most successful French light two-seater aeroplanes. It is the smallest machine in the Farnham range, measuring only 30 ft. 7 in. in span and 18 ft. 4 in. in length. It has a maximum speed of 112 m.p.h. and cruises at 96.4 m.p.h.
One of the most wonderful flights made in the course of the MacRobertson air race from Mildenhall to Melbourne last year, was accomplished by a small British machine, the Miles “Hawk Major,” built by Phillips and Powis (Reading) Ltd. This machine is not a specially-designed racer, but a standard light aeroplane using an engine of only 130 h.p. and selling at £750. A “Hawk Major” flown by Sq. Ldr. Malcolm MacGregor and Mr. H. C. Walker finished fifth in the handicap race, however, completing the journey in 118 hrs. 5 min. 46 sec. flying time, and 5 days 15 hrs. 13 min. total time. Its performance was easily the best made by any light aeroplane in the race, for although a D.H. “Puss Moth” piloted by Mr. C. J. Melrose, of Australia, was third, this machine does not quite come within the category of light aeroplanes. In any case the “Hawk Major” took only about two hours longer for the journey.

By its flight the “Hawk Major” set up a new record for light aeroplanes for the journey from England to Australia, reducing the previous record by about 30 per cent., and also made a light aeroplane record for the flight to India, which occupied 2 days 4 hrs. 58 min. If these flights had been accomplished a fortnight before the race they would have been universally acclaimed, but as all ideas of speed and distance were shattered by the amazing flight of the D.H. “Comet” piloted by Messrs. C. W. A. Scott and T. Campbell-Black, the feats of the smaller machine were almost unnoticed.

Another great success was achieved by Miles aeroplanes in last year’s race for the King’s Cup, when Mr. Thomas Rose piloting a Miles “Hawk” fitted with a D.H. “Gipsy III” engine developing 118 h.p., recorded the highest speed in the race, averaging 147.78 m.p.h. in the final. He secured second place in the race, although he started off scratch in the final. It is interesting to note that Mr. Rose won another heat at a speed of 147.75 m.p.h. and that Mrs. G. Patterson in a standard “Cirrus”-engined Miles “Hawk,” won a heat at a speed of 117 m.p.h., figures that are all the more praiseworthy because of the extremely bad weather conditions in which the race was flown.

These successful machines were designed by Mr. F. G. Miles, who is well-known as the designer of several interesting aeroplanes. Two of his early products were the Southern “Martlet” and the Miles “Satyr,” which were both single-seater biplanes noteworthy for their high performance and their suitability for aerobatics, and as sports types for the private owner. The “Martlet” was built by Southern Aircraft Ltd., and was 25 ft. in span and 20 ft. 3 in. in length. When fitted with a D.H. “Gipsy III” engine, it had a maximum speed of 130 m.p.h. and a cruising speed of 95 m.p.h., and when it was produced, in 1930, was one of the fastest British light aeroplanes. The “Satyr” was not built until 1932.

As in the case of the “Martlet” the machine was of wooden construction except for a small amount of steel tubing in the wings. Its performance was very similar to that of the “Martlet.”

Although both these machines were successful, during recent years Mr. Miles has devoted his attention to low wing cantilever monoplanes. The first machine of this type that he designed was the Miles “Hawk,” a twoseater light touring or training monoplane. Phillips and Powis Aircraft (Reading) Ltd. entered the aeroplane manufacturing field by producing this machine, and an interesting feature is that they were at first able to market
the aeroplane at a very low price because they secured a big number of “Cirrus III” engines from a Canadian company that went into liquidation.

The “Hawk” is an all-wood machine, and is noteworthy for its clean outlines, as are all machines designed by Mr. Miles. Tapered wings are employed in it, although they had previously been thought too expensive to construct for a low-priced private machine. A special feature is that the petrol tanks are arranged so that they can be withdrawn from the centre section without difficulty when the wings are folded back.

The fuselage of the machine is of normal rectangular construction, with a domed roof, and is 24 ft. in overall length, while the wings are 33 ft. in span. The undercarriage is of the divided type and makes use of low pressure tyres. In the early models no attempt was made to streamline the undercarriage, but streamlined “trousers” are now provided. The two occupants of the machine are accommodated in tandem open cockpits containing complete dual controls, and a large luggage locker is provided aft of the rear cockpit.

In spite of the fact that the first “Hawk” only employed a 90 h.p. “Cirrus III” engine, it was capable of attaining a maximum speed of 115 m.p.h. and of cruising at 100 m.p.h.

The “Hawk” achieved such marked success and popularity that a modified and greatly improved machine, known as the “Hawk Major,” was designed. This is a very “clean” low wing monoplane embodying the latest features of design such as tapered wings, a “trousered” undercarriage and wheel brakes. It is of all-wood construction and is of the open type, having two cockpits in tandem. The wings, which are of the ordinary cantilever type, are 33 ft. 9 in. in span when folded and the fuselage is a plywood-covered wooden frame 24 ft. in length. The undercarriage is divided, each wheel being supported on a single leg, and the leg and the wheel are covered with a special cowling so that only a small part of the tyre is exposed to the airstream.

The standard “Hawk Major” is provided with a D.H. “Gipsy Major” engine developing 130 h.p., which gives it a maximum speed of 150 m.p.h. It is capable of carrying a load of 700 lb. and when fully loaded is 1,800 lb., or more than three-quarters of a ton, in weight.

A special feature of the machine is its wheel brakes, which have been invented by Mr. Miles and are normally operated by moving a hand lever in the cockpit, in the usual manner. When a pilot is manoeuvring a machine on the ground, however, he often wishes to use the brakes on each wheel independently of each other to assist in steering. The special Miles brakes are therefore arranged so that their controls can be coupled up with the rudder bar, and any movement of this then causes the brakes to be applied more severely on one wheel than on the other. This practice does not interfere with the normal use of the bar.

The “Hawk Major” is unique in that although it is one of the cheapest high-speed light aeroplanes available in this country, in its construction many operations are carried out that previously were thought possible only in making the most expensive aeroplanes. For instance, tapering makes it necessary for all the ribs in each wing to be of different lengths. The wings on all Miles aircraft, however, are interchangeable and thus mass production methods can be employed in the manufacture of the ribs.

An interesting method of assembling the wing structure is followed. The ribs are placed on special jigs and plywood that has been treated to make it stretch is covered with glue and nailed over the ribs. By the time that the glue has set and the wood has dried, it has shrunk considerably and is quite taut, making it unnecessary for any covering of fabric to be employed. When this stage is reached the nails are extracted and the holes stopped up. This method of construction is particularly durable.

Mr. Miles has now produced an improvement of the “Hawk Major,” known as the “Falcon.” This is practically identical in construction with the “Hawk Major,” but is a little larger, being 35 ft. in span and 25 ft. in length. It has accommodation for four and is of the cabin type. Either a 130 h.p. “Gipsy Major,” or a 200 h.p. “Gipsy Six” engine can be employed in the machine. The “Gipsy Major” gives it a maximum speed of 148 m.p.h. and a cruising speed of 130 m.p.h.,

(Continued on page 94)
LESS than 70 years ago practically all the land on which Vancouver stands was virgin forest roamed by deer, bear, puma and coastal Indian tribes. The growth of the city has been so rapid that the story of its rise to become one of the leading seaports of the world is a romance in itself. Capt. George Vancouver, the English navigator after whom the city is named, could never, even in his wildest dreams, have pictured the busy thriving metropolis that has sprung up on the site he discovered.

In 1791 Capt. Vancouver was given command of an expedition to the northwest coast of North America, one object of which was to discover an eastward passage to the Great Lakes of Canada. He surveyed the coast of California and British Columbia, and also that of the large island nearly 300 miles long and almost 80 miles wide, now named after him, that is separated from the mainland of British Columbia by the Strait of Georgia. He entered this Strait, and after sailing past Swash Rock with its lone tree, a monument carved by nature and famous in Indian legend and song, he discovered a long natural harbour sheltered on the north side by timber-clad, snow-capped mountains, while to the south were the sloping wooded shores now occupied by Vancouver. He named this harbour Burrard Inlet, after Sir Harry Burrard of the British Navy, and a nautical survey of it was made in 1860 by Capt. George Richards of H.M.S. "Plumper."

The first white settler on the site of Vancouver spent his first night there with an Indian, in the autumn of 1862. He was John Morton, a young Englishman who, with two others, bought 550 acres of land where is now the west end of the city. Morton's small log cabin and barn were the first buildings to be erected on that shore. Later a Capt. Stamp arrived, and he built a mill called The Hastings Sawmill, and around this there grew up the village of Granville.

By 1884 Granville had become a small town. In that year Mr. W. C. Van Horne, later Sir William Van Horne, Vice-President and General Manager of the Canadian Pacific Railway, entered into negotiations with the Premier of British Columbia to acquire lands for railway terminal purposes at Coal Harbour and English Bay. Granville also was inspected, and Van Horne was delighted with its situation as compared with Port Moody, the original objective of the railway. It was decided that the line should be extended to Granville, and Van Horne's proposal to change the name of the town to Vancouver was endorsed by the proper authorities.

Vancouver had already become established as a port, chiefly by exporting lumber. This trade had begun to develop about 1865, and had increased so rapidly that in 1876 no less than 50 ships laden with lumber sailed from the port. Timber was also extensively used locally, for it was the common building material. This circumstance contributed to a terrible disaster in June 1886, when a fire that broke out in Vancouver spread rapidly among the wooden buildings and ultimately destroyed the city. At that time the population totalled about 2,000. When rescue and salvage work had been carried out the big task of rebuilding the city was begun, and
many of the timber structures were replaced by more solid buildings of brick and stone. A new and better Vancouver rose from the ruins of the old one, and since that time such wonderful progress has been made that Vancouver is now the fourth largest city in Canada. Spacious thoroughfares, fine public buildings and tall skyscrapers have been built, while port developments have included the construction of huge piers, docks and grain elevators.

Vancouver is situated on a peninsula that juts out into Burrard Inlet. This Inlet, or Harbour as it is usually called, varies in width from one quarter of a mile at its entrance to two and one quarter miles in the main harbour. On the north shore is the City of North Vancouver, which is connected with Vancouver proper by a bridge accommodating rail and other traffic at a point called the Second Narrows, and by harbour ferries that also serve the adjacent municipality of West Vancouver.

The harbour is one of the largest and most beautiful in the world, with an area of 48.78 square miles and 98 miles of shore line. The entrance is known as the “Lion’s Gate” from the fact that twin mountain peaks closely resembling crouching lions overlook the harbour and the city. The harbour is practically land-locked and is undisturbed by wind from any direction. It is open to navigation all the year, and is entered from the sea through a channel of sufficient depth and width to permit the largest vessels afloat to enter. It is divided into three parts, the outer harbour lying west of the First Narrows, the central portion extending from the First to the Second Narrows, and the part east of the Second Narrows. Most of the shipping is concentrated in the central part, which has about 10 miles of waterfront and a maximum width between north and south shores of 2½ miles. Along the waterfront on both shores of this part are piers, docks, grain elevators, lumber mills, meat packing plants, oil refineries, canneries and bulk oil storage plants. East of the Second Narrows the harbour extends for a distance of nine miles to Port Moody, and in this section are also lumber mills, oil refineries and fuel oil storage plants. The piers and wharves on Vancouver’s waterfront are of the most modern construction.

The principal piers and wharves include the Commissioners’ Ballantine and Lapointe piers; the Canadian Pacific and Canadian National piers, and the Nos. 1 and 3 grain jetties. At the Ballantine Pier there is 2,610 ft. of quay where ships can berth, and the depth of water alongside at low water is 45 ft. at the outer berths and 32 ft. at the inner berths. The Lapointe pier provides 2,374 ft. of berthing and the depth alongside is 35 ft. at low water. The four Canadian Pacific piers have a total of 7,749 ft. of quay available for ships, and the Canadian National pier provides 2,374 ft. of berthing. The two grain jetties have a total quayage of 2,400 ft.

Numerous other piers and wharves are allocated to various private companies.

There is ample warehouse accommodation at the port, and spacious one-storey or two-storey sheds are provided on all the piers and wharves. Ballantine Pier, for instance, has four two-storey sheds covering a total area of 410,040 sq. ft., and having a total storage capacity of 41,040 tons.

The Terminal Railway owned and operated by the Commissioners links up the numerous piers, wharves and dock sidings, and connects directly with the main lines of the two great Canadian railway systems, the Canadian National and the Canadian Pacific railways. It acts as a delivery line for all Canadian National traffic to and from Vancouver, and also serves exclusively the industries of the north shore. The port is also served by the Pacific Great Eastern Railway to points in the interior of the province by the Great Northern Railway of the United States, and by the British Columbia Electric Railway Company Limited to local points and to the Fraser Valley. The Terminal Railway has 22 miles of track, and it operates over an additional 12 miles of track by agreement with the other railway companies mentioned.

The Port of Vancouver is known as Canada’s “Gateway of the Pacific,” as most of the country’s rapidly increasing exports and imports to and from the Orient, India, Australia and New Zealand.
Famous Explorer Writes for the "M.M."

I.—Attilio Gatti Describes the Equatorial Forest

STRADDLING the equator lies a huge country of shadow, fear and mystery, which covers half of the Belgian Congo and a good part of French Equatorial Africa. With scarcely a break this almost impenetrable belt stretches from the Ubangi-Uole, that is from the Sudan borders, on the north, to about the fourth degree of south latitude, near the middle of the Lake Tanganyika. After having entirely covered hundreds of ranges of mountains, and enclosed in a dark, heavy setting the sapphires of the Kivu, Edward and Albert lakes, it spreads westward, framing the great Kasai and Congo rivers, invades a part of the Camerouna and of Gabon, and is defeated only when it reaches the shore of the Atlantic.

This is the primeval equatorial forest, a paradoxical world completely shut within itself, which seems to have been crystallised in its immutability for hundreds of centuries. At a few miles' distance from civilised centres with very modern little towns, sometimes one of the infinite tentacles of the forest reaches out, and before it everything stops—human activity, progress, civilisation.

Every now and then a white man, particularly stubborn, has ventured into this alien world. For days and weeks he has cut his way, step by step, through an infernal entanglement that seems interwoven with every possible tree, bush, creeper and nettle on earth, his strength has very soon become exhausted, and he has been compelled to retreat or forfeit his life—as many others have done before him—without having scratched more than the edges of this immense region, the greater part of which is known to no one, black or white.

From the moment one reaches the edges of the forest one finds the first striking contrast in the natives who live there. These, the Watussi, are giants 7 ft. to 7½ ft. in height, picturesque and intelligent, who came, so one knows when or why, or from what point, to constitute in Ruanda an island of ancient Egyptian civilisation. Others, the Bandando, are at the opposite end of the scale. Wretched in body, dirty, stupid, filled with ignorant superstitions, they are passive victims of cruel secret societies, dominated and directed in all probability by a few chiefs and witch doctors of other and higher races. And, as soon as one enters the first mile or so of the undisturbed forest, the only human beings he can find here and there are some diminutive caricatures of men 4 ft. high—the pygmies. Their simian expressions and habits, their precocious feet, their uncanny way of climbing trees and slipping between the thick vegetation, make them seem more monkeys than men.

In contrast, the apes encountered in that strange world look more like prehistoric men than monkeys. They are the giant gorillas, the least known, the largest, the rarest and most ferocious of the four anthropoids, completing their astonishing similarity to man in structure and organ by the embarrassing fact of being no tail. Fachyderms awake the echoes of the mountainous forest, but they are only half the size of the normal elephant, and lively, agile, good-natured clowns lost in a world of drama and fear. They are not much larger than the pigs, which there reach the extraordinary proportions of 7 ft. or 8 ft. in length and 5 ft. or 6 ft. in height, monsters well justifying their name of giant forest hog.

Bee buffaloes, which in the forest are innumerable, do not escape this distortion of form and dimension. Much smaller than the variety that is usually known as the African buffalo, they lack its massive horns with the solid bulging base and the long curved points. Their weapons are two small straights, no larger than those of a young cow of Europe, but beware of them. For if the buffalo of the plains and of the swamps has the name of being vicious, cunning and vindictive, his red-haired brother of the forest, so muscular and agile and quick in his movements, is ten times more dangerous.

One of the most beautiful antelopes, the bongo, hides itself in the dense belt of trees and rank vegetation that surrounds the foot of mountains so high that the sun of the equator fights a losing battle to melt the snow on their peaks. The bongo, too, is a curiosity, if not in form, at least in its customs, or the customs the pygmies attribute to it. For the pygmies firmly believe that this antelope feeds on the charred remains of burnt trees, and that during the night, scorching to the touch, they carry their share of the bongo's return to its forest home.

Even the giraffes, already freaks of nature, have produced a striking representative of their family to give to the equatorial forest—the okwapi. But the okwapi, although one of the family, has preserved only the head, his body being that of a common antelope, and his legs seemingly copied from the zebra's; while his skull resembles nothing less than a prehistoric animal, the Sambatherium of the Lower Pliocene of Europe. A super-freak, therefore, and a suitable one with which to close this brief enumeration of the strangest inhabitants of the equatorial forest.

It was to observe the unspoil pygmies of this equatorial forest; to learn the customs of the aristocratic Watussi; to study the mysteries of the secret societies of the Bandando, and to collect their weapons, instruments and ornaments for the Witwatersrand University of Johannesburg; to obtain for the Tring Museum specimens of as many rare animals as possible; to surprise and photograph the okwapi in its natural environment and to capture two young of this beautiful animal for the London Zoological Society, that the Eighth Gatti African Expedition spent long months of study and preparatory work. This was work complex and
of interwoven vegetation through which we should have to cut our way each day until we came to a favourable spot to establish a base camp.

As if the progression of obstacles provided by the country itself were not enough, our work became increasingly difficult the further we ventured. It is only by chance, it seems to me, that the giant Watussi have escaped until now the knowledge of the big public, and from the short contact I had with them during my previous expedition I know that with some patience and savoir faire I should be able to learn from these intelligent and kindly men all I desired to know. Less easy was the subject of the Bandando and the purely pygmy tribes of the Ituri. Although I knew that I could count, as ever, upon the greatest help from the Belgian authorities, my last experience in Africa had taught me to fear the passive resistance, tainted with ignorance and imbecility, that the native knows how to oppose to everyone who wants to investigate affairs that tradition, and even more the fear of revenge and vendettas, make him regard as tabu. As for the pygmies, their spirit of supreme independence, their ceaseless wanderings, and the simplicity of their minds, make of every inquiry however trivial, a matter of infinite time and patience and labour.

But the rare animals, and particularly the okwapi, were from the outset the great problem. Although they are far more numerous than is generally believed, to approach closely to observe their habits, to photograph, and, worst of all, to capture them alive, seemed to me at times an utter impossibility. For one thing, the senses of hearing and of smell of all the animals of the forest are hypersensitive. Their sight is extremely keen, and their agility, their resistance, and the manner in which they can slip silently and quickly through even the thickest vegetation are really marvellous. By contrast, the white man in the forest is simply hopeless. If he doesn't pick each step with the utmost caution and the most extravagant conterions, his boots slide in the thick mud, crunch dead sticks, and stumble against stones and fallen trees. His garments and his helmet brush against leaves and branches and attach themselves to thorns and ragged stumps, with the result that the noise he is forced to make, augmented by the extraordinary acoustics of the forest, is enough to scare away any animal within a mile.

The march is terribly slow, both because of the oppression of the hot and humid atmosphere and of the thousand impassable entanglements that continually compel long detours. In addition there are all the barriers of difficulties put up by natives and pygmies, without whom it is useless even to try to proceed. Here, they refuse to go without an amount of magnificent spirits; there, because of an extremely animal that kills at sight. Still, with great patience, little by little destroying some superstition, exposing the baselessness of some fear, every day trying to select the best and most serious natives and to instruct them and form them for the work, one reaches the point where he can get what he wants done.

(To be continued)
An Interesting Spanish Locomotive

I think readers of the "M.M." will be interested in a description of the Spanish express passenger locomotive seen in the photograph on this page. It is one of the most recent "1700" series employed on the Madrid, Zaragoza and Alicante Railway, and is of the 4-8-2 or "Mountain" type now employed on practically all Spanish express trains to and from Madrid. Altogether there are 100 of these locomotives. They were built in Barcelona and one of them was a feature of the International Exhibition held in that city in 1929.

As the photograph shows, the engines are impressive in appearance. They are built to a gauge of six Castilian feet, or 5 ft. 6 in., which is the standard in Spain. Walschaerts gear is employed, and the engines are equipped with Dabeg feed-water heaters, similar to those tried on certain British locomotives of the L.N.E.R. and L.M.S.R. The latest engines of the class have smoke deflectors to prevent interference with the driver's range of vision.

The weight of the locomotive and tender in working order is 156 tons 6 cwt. and the adhesion weight is 63 tons. The driving wheels are 5 ft. 2 in. in diameter, and the cylinders have a diameter and stroke of 2 ft. and 2 ft. 4 in. respectively. The steam pressure is 199 lb. per sq. in. This figure seems unusual, but is simply the equivalent in English units of 14 kg. per sq. cm., the figure in metric units used by the designers and makers of the locomotive. Speeds of 68 m.p.h. can be attained with ease.

J. Villa Pajes (Barcelona).

A Great Canadian Lift Lock

I was greatly interested in the article on the electric canal lift at Niederfinow, Germany, that appeared in the issue of the "M.M." for last December, because I live near what is claimed to be the largest hydraulic canal lift lock in the world. This is at Peterborough, Ontario, and is a striking object to those who travel along one of the roads leading out of the town, for they see it suddenly as they reach the top of a hill and look down into the valley below them. The road actually cuts through the concrete superstructure of the lock, and in this there are openings through which its working can be watched.

There are two troughs, or chambers, to accommodate boats using the lift. They are made of steel plates and each is 140 ft. long, 33 ft. wide and 9 ft. 10 in. deep. A boat coming up the canal to be raised to the higher level enters the trough awaiting it and the gates that shut off the water are closed by hydraulic power. A giant steel ram under the trough is then raised by hydraulic pressure, and as the boat is pushed upward the descending trough passes it. At the top of the lift of 65 ft. the gates are again opened, but this time those at the opposite end of the trough are operated in order to allow the boat to pass through to the higher level canal, and to proceed on its way. The actual lift only occupies one and a half minutes.

The lock is one of Peterborough's show places, and is a prominent object, for its towers rise to a height of 100 ft. above the ground.

J. A. Cash (Belleville).
A Tea Planter’s Day

The monotonous beating of tomtoms awakened me only 10 minutes before the time for the early morning muster of coolies. I dressed rapidly and hurried to the muster ground, to find about 300 natives waiting for their orders for the day. Each section took up its allotted position on the ground, the women pluckers standing in one place, the men pruners in another, and the manure forkers forming still another group. In a few minutes they were counted and their names entered in the muster book, and all were sent off for their tools.

After breakfast I called for my horse and started my eight-mile round of work. I had 50 coolies lopping shade trees and spreading and forking inorganic manure in a newly-pruned field. I inspected their work and told the “Kangang,” or Tamil foreman, the acreage to be covered during the day. I then rode on to the pruners. These coolies are the highest paid men on a tea estate, and their work is interesting to watch because of the dexterity and agility with which they use their sharp curved knives.

At length I reached the plucking field and weighed the leaf gathered during the morning. Boys then placed sacks containing 45 lb. of leaf on their heads and ran with them to the overhead ropeway on which the produce is carried over mountains and ravines to the factory three miles away.

My division is one of the steepest in the island, and as I continued my round I had to ride up a narrow winding path, with a sheer drop of several hundred feet on one side and a steep slope on which tea was planted on the other. I was looking at the tea, for it had only just been plucked and should have been broken back to a level, when suddenly I realised I was right on the outer edge of the path. The next instant my horse began to slip. Somehow I managed to get my feet out of the stirrups and fell inward, to grasp the edge of the path and haul myself to safety as the kicking animal slipped from under me and fell to the bottom of the ravine.

It was with a heavy heart that I put down each coolie’s name in my check roll in the evening, for the place where my horse usually waited seemed terribly empty.

W. T. Baker (Haputale, Ceylon).

Deep Sea Trawling

From the bridge of a Grimsby trawler I watched the scene on the floodlit deck at hauling time. It was only four o’clock, and the skipper had swung the boat round in order to get the trawl on the port side, and two steam winches had pulled up the net by means of wire hawser. A phosphorescent glow in the surrounding water indicated a good haul, and the skipper was singing a hymn, which also foretold a good haul. The men had now reached the apex or narrow end of the trawl. A rope with two eyes, called a becket, was slipped round its mouth and attached to a pulley wire, and the bag of fish was swung on board. The third hand had the slimy task of going underneath it to untie the knot, and when he did so out fell the curious mass of jumping plaice, turbot and sole.

The net was carefully examined for holes and again swung over the side. The engines were restarted and the brakes released, allowing the wire hawser to be paid out, and the trawl again was hauled slowly through the sea.

The men now stood on the slippery mass on deck, gutting the fish at high speed and pitching each into its correct basket. Finally the catch was washed with a hose and packed away in the ice chamber forward. There were five baskets of plaice, nearly two baskets of sole, and two large turbot. No wonder the skipper sang. I went to sleep on the floor of the chart room, hoping that I should not be awakened by the noise of the winches when the nine o’clock haul came.

There are nine men in the trawler in which I made my interesting voyage. The skipper is in sole charge. He has no salary, but receives a percentage of the profits, and is the only person on board who knows where we are, and where we are going. He is also the one who decides when to return to port. The mate shares in the profits, and his task is to take half the watches on the bridge and to go on deck during hauls. The third hand shares the watches with the mate, and the two deck hands take the wheel in turn between the hauls. The trimmer is the junior member of the crew and does all the dirty work between hauls, such as trimming the coal, and getting cinders from the boiler room and throwing them overboard.

The two engineers seem to have the best time, although they have to stoke for themselves and keep up steam for their triple expansion engines of 250 hp. The speed of the vessel is reduced from 12 knots to 2 knots when trawling, and an interesting point is that the skipper rings down to the engine room 10 minutes before each haul so that steam pressure can be reduced in order to save blowing off when the engines are stopped. Lastly there is the cook, a very good man to be friendly with!

N. W. Jenkins (Stone, Staffs.).
Locomotive Turntables
Some Interesting Points in their Design

By F. M. Bowen

The turntable has become an indispensable unit in railway working, and one at least is provided at all termini and other important stations, because tender locomotives practically always work with the engine leading. Turntables were described in the "M.M." for March, 1933, but in this article it is proposed to deal in more detail with the actual methods of construction and testing used in their manufacture.

The best possible materials and workmanship are essential in turntable construction in order to ensure complete reliability, for any breakdowns would have serious consequences. For example, in the type of locomotive shed known as a "roundhouse," a turntable is indispensable, as it forms the centre from which shed tracks radiate. This unit as a whole, therefore, must be entirely dependable.

The manufacture of turntables forms a branch of its own in constructional engineering, and in Great Britain and Germany particularly their construction has been continually developed and improved.

The centre-bearing type of turntable greatly outnumbered any other at the present day, and this may be sub-divided into the "deck" or "well" type, and the "through" type. In general, the turntable consists of two main girders connected together by cross girders and bracing and pivoted on a centre bearing that takes the total weight of the table and its load. Whereas in the "through" type the locomotive rests between the main girders, in the "deck" type it stands directly over them. Consequently the latter needs a much deeper pit or well than the former, but this is counter-balanced by the fact that in the through type several heavy cross girders are required to transmit the load to the main girders, so that the total steelwork weighs considerably more than in the deck type turntable of the same diameter and gauge. This excess weight is usually about one-fifth more than the weight for the deck type.

When a turntable design is called for, a standard loading system, provided by the railway company's engineer, is used to calculate the amount of material required in each part. The whole of the main frame is made from mild steel plates and sections riveted together. Half of each main girder acts as a cantilever and must be designed as such. These girders are almost invariably "hog-backed" for a through type and "fish-bellied" for a deck type; that is, the overall depth is reduced from centre to ends in such a way that the moment of resistance of the girder section is proportional to the bending moment throughout the entire length of the structure of the turntable.

The girders are of the simple web type with flanges formed of mild steel angles and plates, and each end rests upon two rolled steel joists known as the end carriages. On these carriages are mounted bearings carrying the cast iron roller-path traverser wheels, which are provided with ball race centres, and run upon a circular track built in the pit. The main use of the traverser wheels is to prevent the turntable from tilting when an engine runs on or off. The centre bearing is always designed to withstand the total combined weight of locomotive and turntable.

Though some turntables are electrically equipped, the majority are turned by hand, by means of levers or by a crank handle and winding arrangement. One lever at each end may be employed both for turning and for operating the locking gear. The construction of the latter is quite simple. Each turning lever is cranked at the lower end, and bored to fit a steel shaft carried by cast iron brackets mounted on the end carriages. On the shaft are small tapered locking levers that run in slots cut in two cast iron blocks, and these blocks are made to slide into castings fitted on to the sides of the pit. By lifting the turning lever the shaft is made to rotate, causing the locking levers to push the blocks into the locking castings, thus fixing the turntable in such a position that the rails are all in line, and the locomotive may safely run on or off. Conversely, by lowering the lever the turntable is free and may be rotated.
Here close resemblance between the through and the deck type turntable ends. In the former the track is carried upon railbearers and cross girders, the main girders being spaced far enough apart to allow ample room on each side of the track. The two centre girders are of heavier section than the others, and are connected together by a built-up centre stretcher, fastened by suspension bolts to a cast steel upper bearing cap. In the deck type the cross girders are dispensed with, and the centre stretcher is fastened directly to the main girders on which the rails rest. A platform of mild steel chequered plate, or wooden planks, usually provided with handrailings, is carried by cranked angles fastened on the outside of each main girder, and some of these may be lengthened to form the handrail standards. In both types the whole weight is suspended from the upper bearing cap by the massive suspension bolts connected to the centre stretcher diaphragms.

The centre bearing—the “heart” of a turntable—may be any one of three types—pin and cup, ball race, or conical roller. In the first of these a mild steel case-hardened semi-spherical pin, fitted into the upper bearing cap, rotates in a phosphor bronze cup fastened to the lower bearing cap. This type has been superseded in later years by the other two types, which reduce friction and provide easier and smoother turning. In the second type the load is carried by a specially-designed ball race placed between the upper and lower bearing caps, and the upper cap is shaped to fit a mild steel cup, thus forming the rocking pintle. The third type is similar, except that conical rollers, tapering towards the centre, are used in place of the ball race.

A through type turntable is usually employed on marshy or similar ground, as in the large pit required for a deck type considerable trouble would be experienced from water leakage. The deck type is generally adopted in other cases, for the initial cost, taking everything into consideration, is lower; and for the turntable alone the price is considerably less than for a through type, owing to the lighter steelwork.

The actual figures of course depend upon the design of the turntable, the price of the materials, and the existing working conditions. In Great Britain comparatively small turntables are used, the diameter rarely exceeding 60 ft. with a maximum working load of 140 tons, though 70 ft. examples are found. Abroad, however, heavier designs are necessary to cope with the larger stock, and diameters vary from 50 ft. to 100 ft., with working loads of from 120 to 280 tons. Many turntables have been constructed in Great Britain for shipment abroad, especially to the Colonies and South America, those required by the Indian Railways in particular being exceptionally massive. One of the heaviest turntables ever made in Great Britain was shipped to India in 1929 for the Madras and Southern Mahratta Railway. This deck type turntable, with a diameter of 85 ft., for a gauge of 5 ft. 6 in., was designed to work under a load of 270 tons, and was tested to 320 tons. Including the weight of the table itself, 68 tons, the total load on the centre bearing when under test was 388 tons, and the deflection in each main girder was 6 in. In the same year a deck type turntable 100 ft. in diameter was constructed for the Kenya and Uganda Railway. Owing to the narrow gauge, one metre, a special design was necessary. This turntable, for 200-ton locomotives, weighed 80 tons in all, and required a pit over 10 ft. deep at the centre.

Every turntable is erected, tested and inspected at the makers’ works before being released. The test load specified is about 25 per cent. more than the working load, and usually consists of a number of blocks each weighing 10 tons. In placing these on the turntable the loading is commenced at the centre, and continued as equally as possible to each end at the same time. It is obvious that the closer the weights are to the ends of the girders the greater will be their effect on the deflection, and this method of loading prevents undue distortion. When the total test load is on the turntable, this is rotated a number of times in each direction, and then unloaded, weights being taken off from the ends first; that is, the order of loading is...
Conversion of S.R. "Baltic" Tank Engines

As announced in the "M.M." for July last, the seven 4-6-4 "Baltic" express tank engines of the former L.B. and S.C.R. are being rebuilt with separate tenders to make them of more general utility when, owing to the forthcoming electrification, they will no longer be required for working the London-Eastbourne services. The conversions are being carried out to the designs of Mr. R. E. L. Maunsell, chief mechanical engineer, at Eastleigh works, and the first to be completed is No. 2329, "Stephenson." Its new form this engine has a handsome appearance, and was greatly admired when placed for exhibition at Waterloo Station on Tuesday, 8th January.

The principal alterations comprise the removal of the trailing bogie, coal bunker and water tanks, the shortening of the main frames, and the provision of a new cab with side windows that, together with the fitting of a shorter chimney, brings the reconstructed engines within the loading gauge of the Southern Railway and permits of their use on any of the main lines other than the Tonbridge to Hastings section.

In their rebuilt form the engines have the boiler pressure raised to 180 lb. per sq. in., and are provided with standard 8,000 gallon double-bogie tenders, bringing them closely into line with the existing 4-6-0 "King Arthur" class locomotives. Other alterations include the substitution of vacuum for Westhouse brake, and pop safety valves for those of the Ramsbottom type. The driving wheels are 6 ft. 9 in. in diameter and the cylinders measure 22 in. by 28 in.

The rebuilt engines will be known as the "Remembrance" class and will have names as follows: No. 2327, "Trinovant"; No. 2328, "Hawksworth"; No. 2329, "Stephenson"; No. 2330, "Cudworth"; No. 2331, "Beattle"; No. 2332, "Stowley"; and No. 2333, "Remembrance." The last-mentioned locomotive, which gives its name to the class, is well known as the War Memorial engine of the L.B. and S.C.R.

New L.N.E.R. Express Services in Scotland

Commencing on 1st January some valuable additions were made to the L.N.E.R. express services in Scotland. In the northerly direction a restaurant car train leaves Edinburgh (Waverley) at 7.25 p.m. for Aberdeen, calling at Dundee, Arbroath and Montrose, and reaching the Granite City at 10.45 p.m. This train provides a very useful connection for passengers travelling from the South by the 11.20 a.m. "Queen of Scots" Pullman train from King's Cross which hitherto has not had a connecting service beyond Dundee.

In the reverse direction a new train leaves Aberdeen at 8.55 a.m., calls at Montrose, Dundee and Kirkcaldy, and arrives at Edinburgh (Waverley) at 12.4 p.m., being the fastest timing in operation between Edinburgh and Aberdeen since the War.

Speeding Up L.N.E.R. Goods Trains

Certain of the important night freight trains on the L.N.E.R. have been speeded up in pursuance of the Company's policy of providing over-night services for goods traffic. Specially constructed wagons fitted with continuous brakes are used and the total amount of time saved nightly on this group of trains is no less than 13 hrs. 80 min.

G.W.R. to Build More "Castles"

During last year 106 engines were built at Swindon works. They comprised the following: 10 express locomotives of the 4-6-0 "Castle" class; 10 goods engines of the 0-6-0 2251 class; 10 tank engines of the 2-6-2 "51" class; 50 tank engines of the 0-6-0 "37" class; 10 tank engines of the 0-6-0 "64" class; six 0-6-0 tank engines of the 1366 class; and 10 tank engines of the 0-4-2 "48" class. The locomotives of the "64" and "48" classes are fitted for auto-train working. In addition 20 tank engines of the 2-8-0 classification were converted into 2-8-2s of the "72" class.

There are now 380 engines of the 0-6-0T type "57" class, and, as a result of the introduction of this standard shunting engine the number of old single- and double-framed tank engines of various classes has been considerably reduced.

Work is now proceeding on the new batch of 4-6-0 locomotives of the "Hall" class, and the frames of loading of these were laid down during January. Further engines of the "Castle" class, 10 in number, are to be put in hand afterwards to be ready for the traffic of the coming summer. Other engines to be built at Swindon this year are 10 standard goods engines and 60 tanks.

The G.W.R. programme for 1935 also provides for the construction of 211 passenger vehicles and 3,486 freight wagons of various types. About 390 miles of track will be renewed and 130 bridges will be rebuilt during the year.

Among the many engines that have been condemned recently are three 4-6-0s of the "Star" class. They are: No. 4005, "Polar Star"; No. 4010, "Western Star"; and No. 4029, "Spanish Monarch." Of these No. 4005, "Polar Star," was notable as being the G.W.R. engine concerned in the "locomotive exchange" of 1910 between the L.N.W.R. and G.W.R., working chiefly between Euston and Crewe. In exchange, the L.N.W.R. 4-6-0 "Experiment" engine "Worcestershire" ran on the G.W.R.
L.N.E.R. Giant Locomotive in France

The L.N.E.R. giant locomotive "Cock o’ the North" has been put through a series of very thorough tests on the special locomotive testing plant at Vitry, near Paris, and some striking results are confidently anticipated, although at the time of going to press no details had been made public.

The "Cock o’ the North" arrived at Calais on 6th December last, together with its train of 30-ton wagons of coal, a covered wagon containing fittings, and a brake van. After the Customs authorities had duly inspected the engine and the other vehicles, the engine proceeded to the Locomotive Shed of the Nord Railway at Calais where steam was got up for the journey to Paris. This journey commenced at 7.30 a.m. on December 7th and, hauling its train behind it, "Cock o’ the North" set off for Paris travelling via Boulogne, Abbeville, Amiens and Le Bourget, where it was transferred to the Paris Grande Ceinture Railway and finally on to the Paris-Orleans Railway to complete its journey to Vitry. The brightly painted green engine with its train of wagons, bearing the words "London and North Eastern Railway," everywhere attracted considerable attention.

On Saturday afternoon, 8th December, the engine was put on to the test plant at Vitry to enable the necessary adjustments to be made and the various instruments to be connected up and the tests proper began on Wednesday, 12th December.

The testing plant at Vitry is designed to deal with locomotives weighing up to 294 tons per axle, capable of a tractive effort of approximately 100,000 lb. and at speeds up to 100 m.p.h. The tests are carried out under laboratory conditions, the locomotive being placed on a series of wheels or rollers that absorb the power output from the wheels of the locomotive and constitute the means by which the requisite measurements are obtained. The locomotive is secured at the rear end to a drawbar through which the pull exerted by the engine at varying speeds is measured.

L.M.S.R. Locomotive News

New express locomotives of the standard 4-6-0 three-cylinder "5X" class turned out from the works at Crewe are numbered 5633 to 5654, and complete the series that was on order there. Further engines included among the engines condemned recently are the following 7-2-0 "Claphams" Nos. 5915, "Robert Guinness" 5921, "Sir Arthur Layley" 5930, "G. R. Jebb" 5937, 5950 5961 5967, "L/Cpl. J. A. Christie, V.C." 5989 6004 6003 and 6007. Five more L. and Y.R. 4-6-0s also have been withdrawn. These are Nos. 10405, 10413, 10421, 10441 and 10447.

Since the L.M.S.R. came into being the number of different types of locomotives has been reduced from 393 to 188, while the number of locomotives superheated has been increased by 2,120, or nearly trebled.

Southern Electric to Sevenoaks

The newly electrified S.R. lines to Sevenoaks were brought into full use on Sunday, 6th January. These latest extensions are from St. Mary Cray and Orpington, and have added 23 more route miles to the Southern electric system, at a cost of over £500,000. The stations affected are Orpington, Chelsfield, Green, Sevenoaks (Tub's Hill), St. Mary Cray, Swanley Junction, Eynsford, Shoreham, Otford and Sevenoaks (Bat and Ball).

Four two-car trailer units and 11 three-car motor units have been built for use in these new electric services, which are supplementary to the existing main line steam trains. More trains now serve each station, the increases varying in extent from 90 per cent. to 170 per cent.

Making Up Time on the L.M.S.R.

Recently owing to a vacuum-pipe breakage, the 8.30 a.m. express from Manchester (London Road) to Euston was delayed 25 minutes in starting from Manchester, but despite further delays by permanent way slacks and signals, amounting to eight minutes, the train arrived at Euston three minutes early. The load was 253 tons from Manchester to Stoke, and 220 tons from Stoke, the engine being three-cylinder "5X" Class No. 8518.
Liner Wagon and Horse

The wagon is made by bolting a pair of Trunnions and a pair of Flat Trunnions to the sides of the wagon for carrying, on the sides, the wheels, mounted on the wagon, on the axles of the 1st Pulley Wheels. The Trunnions are bolted to the upper surface of the Plate, and the same bolts secure a pair of Flat Straps, at the ends of which are Angle Brackets. A 24" Strip is fixed between the Angle Brackets by 6 Bolts, the shanks of which protrude upwards. The Flat Trunnions are bolted to the side flanges of the Plate, and a Double Angle Strip is bolted between them. Two Flat Straps and the Double Angle Strip to hold the logs in position.

Shuts for the horse are made from 5" Strips secured to Angle Brackets. The Shuts are separated from a 23" x 23" Flexible Plate that is bent to form the body and provided with 25" x 25" Cutout Flat Straps and Angle Brackets and form the legs. A Flat Strap is secured in place of the body and secured to a 23" x 23" Flexible Plate. The head is fixed in position by a 27" Axel Rod that is passed through the body and secured to 23" x 23" Flexible Plate. Parts required for Lumber Wagon and Horse: 2 of No. 2; 5 of No. 3; 10 of No. 12; 2 of No. 13; 1 of No. 17; 4 of No. 22; 10 of No. 37; 4 of No. 74a; 2 of No. 48; 1 of No. 82; 1 of No. 112; 1 of No. 126; 2 of No. 125a; 1 of No. 190.

Miles Monoplane—(Continued from page 83)

while the more powerful engines increase the maximum speed to 170 m.p.h. and the cruising speed to 150 m.p.h.

All Miles aircraft are available fitted with an attachment known as the Miles Monoplane. This has been developed by Mr. Miles, and consists of a number of narrow flaps which are arranged upwards below the wing and fuselage of the machine, which forms a short distance above the wing, which is folded. The action of these flaps is to lower the speed at which the machine stalls and an aeroplane to which they are fitted is generally known as a “tailless” type. Further details about the invention when more information concerning it is available.

December Mystery Photograph

The photograph reproduced on page 520 of the December “M.M.,” in which the funnel and part of the superstructure of the vessel are barely visible with girdler work, wooden iron railings and factory chimneys, plus a few indistinguishable objects, many of which were recognizable. The individual portrait identified it correctly as a representation of a Maersk Line Ship, but the name of the vessel was unknown, and it has been cross-referenced by the Bridgewater Canal. The photograph was taken from the level of the upper deck when the acquisitor was unable to see the identifying name on the ship in the photograph, and this explains the unusual character of the scene.
The name of Zeiss has long been held in the highest regard by those who have sought perfection in such articles as prismatic binoculars and photographic lenses. It may seem a far cry from these articles of ultra refinement to the building and repairing of modern steam locomotives, and one may not expect this well-known manufacturer of such apparatus bearing such a name in such a field. However, the cylinder axis is not parallel with the centre line of the engine. A certain tolerance can be allowed here and the telescope is pivoted horizontally until its centre is parallel with the engine centre line, but if the correction would be beyond the allowed limit, it may be necessary to cut down some stiffeners or cross-stays and restack the frames.

Assuming now that the telescope is set parallel with the theoretical centre line of the engine, the sighting scale is removed and a collimator, clamped to a tube in such a way that it is dead at right-angles to the axis of the tube, is supported at the driving horn, the tube being right across the frame between both driving horns. The tube is held in a stand, the top of which can be moved vertically, horizontally to or from the cylinder, and through an angle horizontally in a plane parallel to the cylinder. The tube is now between the driving horns at right-angles to the cylinder axis.

A dial indicator is used to obtain the distance of each horn cheek from the collimator cross-tube, and the latter is traversed longitudinally until it is central between the driving horns. The length gauge, with dial indicator, from gauging points on the telescope tube and the collimator tube, gives a direct reading of the distance from the cylinder face to the centre of the driving horn, and from the collimator cross-tube a locating stud on each frame is set at a definite distance from the horn centre. Similar locating studs are set at the other horns, i.e., leading, intermediate, or trailing, from those at the driving horns by means of gauge rods whose lengths are the desired distances from the driving to the other horn centres. It follows that these locating studs are thus set at the same distance from the desired centre lines of the other horns as the first ones are from the driving horn centre line.

The actual centre lines for the other horns are obtained by supporting a straightedge across the frames at a set distance from the locating studs. It is then a very simple...
Here we review books of interest and of use to readers of the “M.M.” We can supply copies of these books to readers who cannot obtain them through the usual channels. Orders from Book Dept., Meccano Limited, Birkenhead Road, Liverpool 13, adding 1/- for postage to the price. Postage on different books vary, but any balance remaining will be refunded.

“The Romance of Engineering”
By Dr. A. D. Merriman, M.A., M.I. Mech.E.
(Harper, 7/6 net)

In this popular account of engineering the author has traced the main lines of progress from the very earliest times in order to enable him to introduce the stories of the pioneers who laid its foundations, and of the famous engineers who have contributed to its advancement. The result is a continuous story that will give young readers an adequate idea of the progress of engineering in modern life, and the manner in which it has helped in the development of civilisation in general. It is suitable as an introduction to engineering science for boys who intend to follow it as a profession.

A preliminary chapter deals with engineering in antiquity, and tells the story of Archimedes, the Greek scientist who regarded mechanics as ignoble and sordid, but who so far won so many useful contrivances that he is now called the “father of mechanics.” Another early engineer was Hero, or Heron, of Alexandria, the inventor of the steam engine, and a description of his invention introduces the story of steam, to which the next five chapters are devoted. No further progress seems to have been made until the 17th century, when several elaborate devices that look effective on paper, but probably were never constructed, were described. The first man to make real use of steam appears to have been the Marquis of Worcester, an engineering genius who, about 1858, invented a fairly successful steam pump that lifted water to a height of 40 ft. The Marquis also invented a famous device for securing perpetual motion, and the author shows conclusively why this and similar contrivances failed.

The age of steam can really be said to have begun with Papin, a French refugee who invented a digester or boiler for softening bones, and developed it into a steam pump. Papin was followed by Savery and Newcomen in England, and interesting details are given of the engines built by the latter, which to look clumsy, but were a wonderful advance on anything previously constructed. James Watt then comes into the story, and we learn how the many improvements he effected transformed the Newcomen engine into a far more efficient source of power, and ushered in the age of steam in industry. This is one of the most fascinating stories in the history of engineering.

While full credit is given to Watt, the work of his rivals is not overlooked, and in particular the introduction of high-pressure engines. Early locomotives, TRETHICK, and his wonderful pioneer work on the development of locomotives, is fully explained. In its earlier days the steam engine had been applied chiefly to pump water out of coal and tin mines, but machines, in one of which Tarn authors supplied the necessary power, and interest increases as the development of the balloon and the aeroplane are traced. In many respects flight is the most romantic achievement of the engineer. The story is yet far from complete, but immense progress has been made since the first flights of the Wright Brothers, and the author is able to point out that Imperial Airways have had only four accidents in regular commercial flying covering more than 6,000,000 miles.

The engineer is concerned also with other sources of power, and these three chapters show how the wind, streams and waterfalls, and the Sun have been harnessed. The water mill has had a very interesting history, but is now almost obsolete. The water mill proceeded the windmill, and in its turn the waterwheel, but water power in another form now furnishes us with electrical energy on an ever-increasing scale. Efforts to harness the Sun directly have had limited success so far, and as yet it is cheaper to use this power indirectly by burning coal, which represents plant life nourished by the Sun millions of years ago, or by utilising wind and water power.

Finally the author reviews the constructional work of the civil engineer. In successive chapters he deals with the romance of the lighthouse; the erection of the breakwaters that make our harbours safe, and of the dams that harness the power of great waterfalls; the construction of bridges, and the boring of huge tunnels. In all cases he traces the development of the type of structure he is dealing with, and describes recent examples as illustrations of the principles involved. This section of the book also contains an account of the making of iron and steel, the most important of the metals used by the engineer. The author gives interesting details of the fabrication of the steam engine, and the steam turbine also is dealt with, and the manner in which various types of this efficient form of steam engine work is fully described.

Good illustrations are essential in a book that deals with the story of a science that is so closely connected with our daily lives, and this volume contains 23 plates, and 12 drawings or diagrams in the text.
“Romping Through Physics”
By Otro W. C. Gurney (Routledge, 4/6 net)

There is nothing very terrifying in “physics,” the science that deals with, among other things, heat and the general properties of matter; and this book, translated from the German by H. S. Hatfield, is intended to show in an entertaining manner how this science explains many matters that we encounter in everyday life, and solves curious problems that often puzzle ordinary people.

The story begins in homely fashion in the kitchen, with explanations of the best methods of poaching eggs and of keeping coffee hot without boiling it. This leads to the curious fact that liquids boil below the centigrade scale and of keeping coffee hot without boiling it. This leads to the curious fact that liquids boil below the centigrade scale; and of boiling them, a paradox that in turn brings us to an interesting discussion on air pressure, in the course of which we realise why it would be difficult to make good tea or coffee, or to boil eggs, on the top of a high mountain, or on the planet Mars, where atmospheric pressure is very low. The introduction of eggs gives an excellent chapter about balance and the effect of rotation on balance, for an unboiled egg cannot be spun up, whereas a boiled one spins easily. The author is now well into his stride, and one absorbingly interesting topic after another is dealt with at high speed and in a breezy manner that justifies the title of the book.

How much does a flying fly weigh? If a man dropped into a shaft driven through the centre of the Earth, how long would it take him to reach the other side, and what would happen when he arrived? Why does the weight shown on an automatic weighing machine change when one bends down, or when the arms are waved about? Can a pistol be fired at the deepest point of the oceans, where the water pressure is seven tons per sq. in.? Where do sunken ships go to? All these and many other puzzling questions are answered in an admirably easy and straightforward manner, and the reply often is very surprising.

The climax comes when the effect of the Earth’s rotation on the weight of objects on its surface is considered. We learn that a fat Eskimo weighing 200 lb. would lose nearly a pound in weight if he were transferred from Arctic regions to the Equator, but would regain it immediately on returning home! This is explained as partly due to centrifugal force of the Earth’s rotation, and the author then asks us to imagine what would happen if the spin of the Earth were speeded up so that the day lasted only an hour and a half. At the Equator centrifugal force would then balance gravity, and nothing would be able to weigh anything. Buildings, elephants and trees and human beings would drift upward into the air, only to be swept northward or southward by violent winds. Those who retired to the north would be rained down on London, New York and other places, and the inhabitants of the temperate zone who survived the visitation would find it necessary to lean at an angle toward the north to balance centrifugal force, and would find it comparatively easy to walk up the north side of a house as a fly climbs up a wall! Only at the poles would there be no change, but a polar bear who ventured too far away from that haven of refuge would find himself irresistibly pushed southward and unable to return! Fortunately no catastrophe of this kind is likely to happen, for the Earth is slowing down rather than speeding up; but the story of the astounding results of this imaginary increase in the speed at which it turns helps to show how we depend on Nature’s laws for our very existence.

The book is full of interest, and the 103 coloured drawings illustrate the text in an appropriately humorous manner that adds largely to its attractions.

“Sydney Harbour Bridge, the largest arch bridge in the world.”

“The present issue contains 124 pages of valuable technical articles that fully maintain the high standard of previous issues, and also includes contributions dealing with matters of interest to the ordinary reader. Such as the pearl diving industry of the north-west coast of Australia, and the efforts to find oil in Great Britain. A special feature this month is the first instalment of a reprint of a work on the minerals of Cornwall by M.H. Kipps, a famous pioneer chemist and mineralogist of the 18th century, which gives an fascinating account of mining 150 years ago. The issue is well illustrated by means of 34 excellent photographs and drawings, and its contents will appeal to those “M.M.” readers who are interested in chemistry and its industrial applications.”

“Suns and Worlds”
By W. H. Stevenson (A. & C. Black Ltd, 2/6 net)

Although the author of this introduction to astronomy claims that the science dealt with is the simplest branches of knowledge, it is by no means easy to compress into a small book an adequate review of our present-day knowledge of the subject. Dr. Stevenson has succeeded in giving a valuable outline of astronomy as far as it can be understood without mathematics. He has dealt throughout with results rather than with the methods of astronomers, and his book will be appreciated by all who are attracted by the problems presented by the Sun and the stars.

An excellent introduction considers the Earth as a viewpoint, and not only explains the difficulties that astronomers have to contend with in studying their subject, but helps to form a convenient starting point for the journey through space that occupies the rest of the book. Naturally an account of the solar system occupies the next few chapters, and what we know of conditions on the Sun and on the planets is explained briefly but adequately. From our own Sun we pass to the stars, or other suns, and the author shows how they differ in size and in brilliance, and how we have learned to read their histories.

The final chapters will be found less easy by the average reader, but the effort to follow them will be well worthwhile, for they form an outline of modern views of the Universe as a whole. In them the author shows how the theory of change and motion in the heavens has told us something of the nature of the galaxy of stars of which the Sun and his family form a comparatively insignificant portion, and of other galaxies beyond our own. This study also has shown us that the great nebulae are running away from us at an amazingly high speed, and that the Universe in fact is rapidly expanding.
Motoring Inside A Wheel
Novel Vehicle That Rolls Like A Ball

The wheel has been described as the most brilliant of the inventions of Man, and it is certainly true to say that the world runs on wheels, for we have travelled on wheels from prehistoric days. The chariots of the ancients and the four-wheeled carts of the Romans have been succeeded by the wagons and clumsy carriages of the Middle Ages, by the stage coach and other horse-drawn vehicles of later days and by the railway train and motor car of modern times, and with each advance there has been a greater ease in speed and comfort.

Improvements also have continually been made in the surfaces of the wheels, the road and the road have been associated with each other since the beginning of civilisation. The steam and electric locomotives of today run on roads formed of steel rails, while rubber tyres enable motor cars, omnibuses and lorries to travel at high speeds on the prepared surfaces of our highways. To some people such developments may seem to be the final stage in the development of transport on land, and these look to the air as the future highway. We may look forward to equally revolutionary changes in road transport, however. The introduction of creepers and lorries equipped with these are to a large extent independent of road surfaces, so that they can be used for travelling over rough ground and for penetrating into undeveloped regions.

Another invention that gives promise in this direction is illustrated on our cover, which represents what is called the "dynasphere." This novel vehicle is the invention of Dr. J. A. Purves, Taunton, and is capable of rolling along roads, or over fields and wild country, as easily as a ball runs along a smooth surface. The dynasphere of course is yet in the experimental stage, but it possesses so many advantages that we may eventually see gigantic wheels similar to that shown on our cover running along our highways as in large numbers as motor cars do to-day.

The idea of the dynasphere is very simple. The engine, transmission and bodywork form a unit that travels on rails inside a spherical cage. When the engine is in action, this unit tries to climb up the side of the cage, which is made to revolve by its weight, and thus the great wheel is impelled along the road as readily as if it were driven directly by the engine. In this case, however, there is no tractive effort at the point of contact of the wheel with the ground, and the movement is purely one of rolling.

The great wheel of the dynasphere is not a complete sphere, but the median section left after the sides are cut away, and an idea of its shape can be obtained by imagining a cricket ball with the smooth-surfaced sides cut away to leave only the part encased by the seam. The remaining surface of the sphere also is partly cut away in order to provide the necessary visibility and the part that actually comes into contact with the ground therefore consists of a series of connected rings. These rings are 10 in number. Each is 7 ft. 6 in. in diameter and from one side of the device to the other measures 4 ft. The rings are provided with solid semi-circular tyres that are inclined progressively outward so as to offer as little obstruction as possible to the view of the driver of the vehicle, whose seat is in the interior of the wheel.

One of the most remarkable features of the dynasphere is the low power necessary to give efficient and speedy movement. A two-cylinder air-cooled Douglas engine of 6 h.p. is installed in the experimental vehicle and a gear-box with three speeds forward and one reverse is fitted. The drive is transmitted through a chain to the main axle of the unit that runs on the rails inside the dynasphere. The driving wheels of this unit are only 7 in. in diameter and 1 in. in width, and the rails on which their metal edges run have Ferodo linings.

Steering is simple but effective. As the dynasphere is in effect a single wheel, the driver could steer it by moving to one side or the other in order to tilt it, as is sometimes done on a bicycle. This of course would not be efficient and instead the driver moves the rails across the vehicle by means of gearing controlled by a steering wheel of the ordinary type. The movement of the rails tilts the great roller and causes it to turn to left or right, the unit within the vehicle meanwhile remaining upright. In trial runs the driver executed some sharp turns by leaning out on one side of the dynasphere in order to increase the efficiency of his movement of the steering gear.

The dynasphere is controlled very much in the same manner as an ordinary motor car. It is braked by simply switching off the engine, when the bodywork within it tends to swing backward and thus checks the movement of the sphere, and a special brake is provided to keep it stationary on a gradient. Speeds of 30 m.p.h. can be obtained with the experimental model already built, but of course much higher speeds could be obtained with specially designed dynaspheres.

The vehicle travels backward and forward with equal ease. When the engine is started and first gear is engaged, the forward movement of the bodywork and engine unit as it begins to climb up the sphere is immediately noticeable. Its weight quickly sets the vehicle in motion, however, and then it returns to its normal position. Stopping the engine has the reverse effect, for then the unit begins to back up the rails and as it strives to do so the rails its weight opposes the forward movement of the sphere.

At present it is impossible to say what may come of this invention, but it has so many advantages that further developments will cause no surprise. As the wheels are simple in construction and there is no effort, and practically no wear, at the point of contact with the ground, the cost of maintenance should be comparatively low and the vehicle should be durable. The bodywork and the engine move lightly on the rails and the easy motion of the sphere itself is comfortable for the driver and passengers, and the simplicity of construction would make the vehicle comparatively cheap to build. It is claimed that the dynasphere can achieve all that is asked of passenger-carrying vehicles, and it may be brought into use on a large scale on the roads of civilised countries, it may prove invaluable for use in others that are not so well developed. There it will have the further advantage of making necessary the construction of the costly roads that are required for the heavy traffic of modern times, for there is practically no wear on the ground over which it travels, or tendency to disintegrate it, because of the easy rolling movement and the single point contact with the surface.
The slender-looking structure shown in the accompanying photograph is the Belah Viaduct in Westmorland, situated on a line remarkable for the boldness of its engineering, the former North Eastern, now L.N.E.R., route from Darlington to Tchay, by way of Barnard Castle. This was originally the South Durham and Lancashire Railway, and was intended to "unite the manufacturing districts of Durham, Northumberland and Cleveland with those of Lancashire and the West." In the development of the Cleveland iron industry it had been found that better results were obtained by the addition of Lancashire ore to the local ironstone, and consequently quantities of this ore had been passing from Lancashire to the north-east, by a roundabout route, via Carlisle and Newcastle.

In order to shorten this journey, the South Durham and Lancashire was incorporated in 1857. It was worked by the Stockton and Darlington Company from its opening in 1861, and was absorbed by them in 1863, shortly afterwards passing with that line into the hands of the North Eastern Railway Company. It was a bold project, the line being carried across the wild moorland country over the Pennines, reaching at the summit of Stainmore an altitude of 1,369 feet above sea-level. Deep gorges break up this mountainous district, necessitating the numerous viaducts on the line, of which Belah Viaduct is the most notable. Some of these structures are of iron and some of stone, the largest of the latter being Smardale Viaduct, which is 554 feet long and 80 feet high. Of the three most important, the Belah, Deepdale and Toes viaducts, the first two are wholly of iron, while the third has its wrought iron lattice girder portion supported on stone piers.

Belah Viaduct, which cost £31,630 to build, attains a maximum height of 196 feet, and is 1,040 feet long, being made up of 16 spans of 60 feet each. Iron was selected as the material on account of the rapid construction possible with it. The foundation stone was laid on 25th November, 1857, and at a meeting of the company held on 14th February, 1860, the engineer declared the viaduct completed. The superstructure is of the wrought iron lattice girder type, resting on tapered piers of cast iron columns braced together by cast iron struts and wrought iron tiebars. Each pier consists of six columns 12 inches in diameter, 50 feet wide at the base and tapering to 22 feet wide at the top, arranged in two parallel lines of three each, braced together at intervals of 15 feet. This construction is well shown in the photograph in which a mineral train is seen crossing the viaduct.

The line on which the viaduct is situated ascends from Kirkby Stephen on its way to the summit of Stainmore, descending from there to Barnard Castle. The summit is the highest point reached by passenger trains on the L.N.E.R. and as the gradients are steep, assistant engines are sometimes necessary. The concentration of weight on the viaduct makes piloting impossible, and so the assistant engine is always attached to the rear end of the train. Trains in the downhill direction towards Kirkby Stephen, travelling with steam shut off, cause a sudden noise in passing on to the viaduct, and this is often mistaken for thunder by strangers.

It is interesting that on the stonework of one of the buttresses the following rhyme appears:

"To future ages this rhyme will tell
Who built this structure o'er the dell
Gildes Wilson with his eighty men
Raised Belah's viaduct o'er the glen."

Like the other viaducts and bridges on the line Belah Viaduct was made wide enough for two tracks, although only one was laid at first. Although the Stockton and Darlington system was amalgamated with the North Eastern in 1863, it was managed independently for 10 years afterwards by a joint committee. Similarly the locomotives were kept separate from North Eastern stock, and numerous engines were built to Stockton and Darlington designs until 1874 for service on that section of the line.

For the haulage of the mineral traffic that was the chief reason for the construction of the line, more powerful engines than those previously in service on the Stockton and Darlington Railway were ordered. The first were delivered in 1862, and were of the 0-6-0 "long-boiler" type, having all three axles below the boiler barrel, with the smoke-box and fire-box overhanging. These were provided with the form of feed-water heater known as "Bouch's coffee can." A water jacket was formed round the chimney, and the heat of the exhaust steam and gases was used to raise the temperature of the feed-water pumped into the "can" from the tender. Another feature was the comparatively large cab with roof extended backward to shelter the enginemen when passing over the wild heights of Stainmore. This class of locomotives was successful, and became the prototype of subsequent mineral designs on the North Eastern until the introduction of more modern types.

Of the locomotives for passenger traffic, two 4-4-0 engines built in 1860 were remarkable in that they were provided with large side-window cabs similar in general appearance to those standardised much later on the North Eastern system. These two engines were named "Doughnash" and "Lowther." It is curious to note that more similar but slightly larger engines built a year or two after these were not provided with the large cabs, nor any form of shelter at all for the enginemen except plain weatherboards; and the commodious cabs of the original two were subsequently replaced by the more open erections favoured on the Stockton and Darlington Railway.
WEALTH EXTRACTED FROM SEA WATER

SEA water is an immense reservoir of chemicals carried down into the oceans by the rivers that flow into them, and almost every known element has been recognised in it. By far the most abundant of the substances in it of course is common salt, to which it owes its characteristic taste. Sea water in fact contains so large a proportion of salt that it was long regarded as one of the principal sources of this chemical, especially in warm countries where the heat of the Sun could be used to evaporate it in lagoons, or in shallow tanks filled at high tide. Almost all the salt we use to-day came originally from the oceans of millions of years ago, however, for it is derived from deposits left in the Earth when prehistoric seas dried up, and is extracted either by direct mining, or by pumping brine from the ancient salt beds and evaporating it in vacuum pans.

Since the oceans seem to be of comparatively small value as sources of the most abundant of the substances contained in them, the prospect of obtaining other chemicals from sea water appears to be remote, for these constituents are present in very much smaller proportions than salt. One of the most important of them is magnesium bromide, which contains the important element bromine. It has been estimated that there are 120,000 million tons of bromine in the sea, but so enormous is the quantity of water in which its compound with magnesium is dissolved that there are only 70 tons of it in every million tons of sea water. It is therefore scarcely surprising that until recently the possibility of obtaining bromine from the oceans has been disregarded, especially as it could be obtained in sufficient quantity from other sources. An increased demand for bromine, chiefly for use in the production of Ethyl petrol, compelled chemists to turn to the magnesium bromide in the sea as a possible source of the greater quantity required. Immense difficulties were encountered in devising methods for extracting it, but eventually these were overcome, and to-day the waters of the Atlantic Ocean are being made to yield bromine by a process that undoubtedly is one of the greatest triumphs of the industrial chemist.

Bromine has had a very interesting history. It was discovered in 1826 by A. J. Balard, a French chemist, who extracted it from the water of salt marshes in France, but it had previously been obtained from a salt works in Germany by J. W. Liebig, who is best known to most people as the originator of the famous extract of meat that bore his name. Liebig did not recognise it as a new chemical element, and did not examine it thoroughly, for he thought it was a compound of iodine and chlorine with which he was already familiar. He realised his mistake when he heard of Balard’s experiments, and in after years was accustomed to show to his friends a cabinet in which his own product stood, along with other reminders of mistakes he had made in his youth, and to explain to them how his carelessness had lost him the honour, greatly coveted by chemists, of discovering a new element.

Bromine is a heavy yellow liquid that has a very unpleasant and irritating smell. It derives its name from this peculiarity, for the word “bromine” comes from bromos, a Greek word meaning a disagreeable odour. In combination with other elements it is present in most salt deposits and natural brines, and for years the source of the greater part of the world’s supply was the thick beds of salt left behind on the evaporation of a great arm of an ocean that in prehistoric times extended over the Stassfurt district in Central Germany.

Now that the sea is a regular source of bromine, it is interesting to realise that at one time the element was obtained indirectly from the Atlantic Ocean. Certain forms of sea weed cast up on the western shores of Ireland and Scotland during great storms contain magnesium bromide and other salts absorbed from the sea water, and formerly they were collected and burned to form an ash, kept from which the bromine and other chemicals were extracted. The process fell into disuse when it was found that the most valuable kelp products could be obtained more cheaply from other sources. The enormous quantity of sea water that had to be treated constituted one of the greatest difficulties confronting chemists when efforts first were made to use the ocean as a source of the chemical. The earliest efforts were made in 1924, when a small scale plant was built for the purpose, to be followed a few months later by a similar plant erected on a boat moored off the American coast.

For various reasons these experiments were abandoned, and the Dow Chemical Company took up the enterprise. At their great works in Midland, Michigan, this company was already making bromine from natural brines pumped from deep wells, and now devoted many years of experience and effort to the problem.
of using salt water from the oceans in place of the more concentrated brines pumped from the Earth. How difficult the task was can be gauged from the fact that sea water contains about the same proportion of bromine as the waste products flowing out of the plant in which the element is extracted from natural brines.

Eventually a process was worked out that promised success. It was practically the same as that already in use for stronger brine pumped out of the Earth. The sea water was first made slightly acid by the addition of a carefully measured proportion of sulphuric acid and treated with chlorine. A current of air was next blown through the liquid. This carried the bromine with it in the form of a vapor that was absorbed by a solution of soda ash, or sodium carbonate. Bromine liberated by adding sulphuric acid to this liquid was driven out by steam and condensed to the familiar red liquid.

The discovery of a practicable chemical process was only the preliminary step and much hard work was necessary in order to achieve industrial success. The plan was tried first with artificial sea water, and then with real sea water carried in tanks to the Dow plant at Michigan. These experiments seemed to show that sea water could be made to give up its bromine at a reasonable cost, and search was made for the best site for a trial on a larger scale. This had to be on the coast, for clearly it was impracticable to carry the sea water to the plant, and before a decision was made samples of sea water were taken during a boat trip from New Orleans to Havana, and from there to New York. It was found that the percentage of bromine was approximately the same throughout, and that the water of the Gulf of Mexico was of no greater value than that of the Atlantic Ocean. It was decided to erect the plant on the Atlantic coast.

The next point to be considered was the disposal of the water from which the bromine had been extracted. This had to be discharged at a distance from the source of the sea water used in the plant in order to prevent dilution; and for this reason a peninsula between the ocean and a river flowing into it seemed to offer an ideal position, as the sea water could be taken in on one side and discharged on the other, after treatment. There is a peninsula of this kind between Cape Fear River, in North Carolina, and the Atlantic Ocean. It juts out southward, and as the fresh water of the river itself turns southward on reaching its mouth, the waste sea water poured into it from a factory established on the peninsula would be carried away from the intake. A pilot plant to give 500 lb. of bromine a day therefore was built on this site, and operated for six months, and the results were so successful that it was decided to design and construct a larger plant with an output of 15,000 lb. a day.

Work on the new scheme began in 1933, and was completed within five months. Many intricate problems of engineering had to be solved before production began. One of the chief difficulties was that of transport, for the nearest railway station was at Wilmington, about 20 miles away, and all the necessary implements and building materials had to be delivered by motor lorry. The area to be cleared was 90 acres, and the erection of the buildings involved the laying of nearly 4,000,000 bricks and the use of nearly 9,000 cu. yds. of concrete with 425 tons of steel reinforcement. In addition, 350 tons of structural steel were required and 38 miles of 6 in. water pipe were laid in conduits with a total length of 94 miles. At one time 1,500 men were employed in the work.

Eventually before the plant was completed a wharf was built on the shore of Cape Fear River and a channel to it dredged from the navigable part in order that supplies required for the operation of the plant could be delivered by boat. A 140-ton vessel propelled by a 100-h.p. Diesel engine was acquired for this purpose, and equipped with special tanks to carry sulphuric acid.

The design of the intake for the water to be treated had to be carefully thought out, for no structure of this kind had ever previously been planned. Eventually with the pilot plant showed that a single row of piles would not withstand the pounding of the ocean waves, and it was therefore decided to protect the channel on each side by two parallel rows of piling made rigid by means of cross pieces. Interlocking between adjacent piles 80 ft. in length formed the intake walls, and these were driven to a depth of about 42 ft. below low tide level. Lines of similar piles constituted the supporting cross pieces, and the spaces between the walls were filled with sand dug out of the channel stream.

The intake constructed in this manner is about 200 ft. long, and extends 30 ft. into the ocean at low tide and about the same distance on to the land at high tide. The channel between its double walls is 15 ft. wide, and water rushing up it flows into a great settling basin, 112 ft. long, 76 ft. wide and 12 ft. deep, that has walls formed of similar piles and strengthened by steel rods anchored in timber pilings to enable them to withstand side thrusts. Considerable difficulty was experienced in driving some of the piles, and jets of water at a pressure of 100 lb. per sq. in. therefore were used to clear away the sand below them as they were hammered into position.

The water from the settling basin flows into concrete compartments provided with bulkheads and screens to remove floating sticks and other foreign materials, and is then pumped into pipes, one of which has a diameter of 6 ft., that deliver it to a reservoir from which it can be passed on the plant as required. The works are on the bank of the river and sea water from the reservoir reaches them by means of a canal 4,000 ft. long and 6 ft. in depth.

An interesting factor in the care with which every detail has been thought out is the provision of a pond through which the sea water is by-passed during summer. This has a large surface area and during several months of the year the temperature of the water passing through it is raised high enough to increase the efficiency of the plant to an appreciable extent.

Two units for the extraction of bromine have been erected near the shore of Cape Fear River, and between (Continued on page 135)

Looking down on the tanks containing the liquor in which the bromine is absorbed. The steel flume from which sea water is pumped into the extraction plants is seen in the lower left-hand corner.
Giant X-Ray Tubes for Healing Purposes

Many of the scientific triumphs of recent years may be said to have originated from nothing, or rather from the nearest approach to nothing that could be achieved! This statement sounds almost like a contradiction. It is realised that the X-ray tube, the wireless valve, the photo-electric cell and similar devices depend for their working upon the production of what is called a vacuum. A vacuum of course should be empty space, but this ideal state is never reached, for there are millions of molecules in every so-called vacuum tube yet produced. The name is convenient, however, and is retained because the number of these tiny particles remaining in such a tube is very small indeed in comparison with the number that would be present in it at atmospheric pressure. For instance, a glass bulb 5 in. in diameter filled with air at atmospheric pressure contains so many molecules of nitrogen, oxygen and the other constituents of the atmosphere that their number would have to be represented by the figure 29 followed by no fewer than 21 ciphers. This is several million million million times the number present after evacuation to the utmost limit attainable, but even then there are in the bulb sufficient to require the number 37 followed by 12 ciphers to enumerate them.

The air removed from a vacuum tube of the usual type is pumped out and the vessel is then sealed off, the necessary electrodes being introduced before the evacuation and the sealing takes place. Unfortunately a vacuum formed in this manner cannot be relied upon, for gas lurches in unsuspected quarters and later makes its appearance in the tube, which loses its efficiency for its special purpose. The chief source of this gas is the glass of the tube, and even prolonged baking before the final sealing is not sufficient to prevent gas discharge. It is therefore very difficult to render a tube completely free from gas, and to enable the desired low pressure to be maintained in it, for the gas that continually diffuses from the glass can only be removed by the action of metallic vapour leaving the electrodes themselves, and this is not sufficiently effective.

The trouble is intensified when high voltages are used, for their rapid application leads to harmful gas discharges, which may be so severe that the glass wall of the tube may be fractured, involving costly replacement. The failure of an electrode or of any other part of the complicated glass tubes now used also renders the tubes useless, unless extensive repairs are carried out, and because of these difficulties it was recognised that a type of vacuum tube that could easily be dismantled and from which the gas is removed continuously during action would be a great advantage. Tubes of this kind have now been developed, and these have the added advantage that they are constructed on what may be described as sound engineering principles and the use of glass is avoided. This means longer life and greater utility, for higher voltages can be used with safety.

The event that led to the introduction of the new types of vacuum tubes was the unexpected discovery of oils and greases with very low vapour pressures. The experiments that led to the production of these oils had no connection with work on vacuum tubes, and indeed were not expected to have any industrial applications. They were carried out in the research laboratories of the Metropolitan Vickers Electrical Company Ltd., where certain oil distillates were produced. That boil without decomposition, and have a rate of evaporation at room temperature that is so slow as to be almost unmeasurable. It was realised at once that the oils were ideal working liquids for pumps intended to extract the air from vacuum tubes and to-day large and highly efficient X-ray tubes, wireless valves, vacuum furnaces and alternating current rectifiers are built in which the parts can readily be dismantled and put together again, because they incorporate oil pumps that remove the air in a very short time and act continuously while the vacuum tube itself is in operation.

How valuable this discovery is can be realised from a description of the X-ray tube in which it is applied. Many important uses are made of X-rays, but none is of greater interest than their application to the cure of cancer and other diseases. For this purpose very penetrating radiation that can only be obtained by the use of very high voltages is required. The continuously evacuated X-ray apparatus developed by the Metropolitan Vickers Electrical Company Ltd. therefore is designed to have a continuous rating of 250,000 volts, which at present represents about the maximum that radiologists require. Actually it is designed to withstand pressures of 300,000 volts and the internal clearances were so chosen that sparkovers do not occur with even higher pressures.

The tube is so constructed that the distance between the two electrodes is about 1 in. and is the smallest gap in the tube. These electrodes of course are the cathode, from which a stream of electrons is driven by the pressure of 250,000 volts applied to the tube, to strike the anode, or positive electrode, with a speed of about 100,000 miles per sec. It is the tremendous impact of this stream of electrons that generates the X-rays.

On the opposite page is a drawing showing the construction of a continuously evacuated X-ray tube of this kind. The body of the tube is of solid drawn steel and is 8 in. in diameter, the metal being...
in thick. At its ends are steel flanges with flat surfaces ground to an accuracy of one 25,000th part of an inch, and on one of these flanges is fitted a porcelain insulating sleeve 1 that supports the cathode plate C from which projects the long tube carrying the cathode itself. This tube consists of a small spiral of tungsten wire housed in a small recess. Opposite to it is the anode A, the target of the electrons it gives out. This is a thin disc of gold, and as the bombardment to which it is subjected makes it very hot, it is soldered into a block of copper that is continuously cooled by means of a film of water from a high pressure supply. The face of the gold disc is set at an angle to the line of the tube, so that the X-rays pass out from it through a thinnier section of the steel tube to a port or opening that directs them towards the place where they are applied.

The body of the X-ray tube has a lining of lead, 1/2 in. thick, so that no X-rays can escape from it except through the special port provided. Protection of this kind is very important. The rays are capable of producing burns on the skin and of developing dangerous diseases if they come in contact with the X-ray treatment caused serious trouble, in some cases leading to the deaths of those who worked continuously with the X-rays.

In the Metropolitan-Vickers continuously evacuated tube the more dangerous rays are cut out of the beam by means of thin sheets of copper or aluminum slipped into the filter slide K, and only rays of the length required for curative action therefore reach the patient under treatment. The rays also pass through the steel tube, at this point only 1 mm., or 0.084 in. in thickness, and this helps to filter out undesirable radiation. In addition a thick sheet of lead can be placed in the path of the rays. This has the effect of stopping light from the tube, and it is then with the tube eight hours an hour for 365 days a year effects, although two minutes pause to the radiations produced by the tube would cause severe burns. The robust design made possible by the new principle applied in the construction of the tube enables complete protection of this kind to be given easily without making the apparatus unwieldy or lowering its efficiency.

The pumps that continuously evacuate the X-ray tube are seen at P1 and P2. They are automatic in operation, and remove so much air that the pressure within the tube is about one million millionth of that of the atmosphere. This extremely low pressure is readily maintained and even after prolonged use there is no deterioration of the vacuum to impair the value of the tube. It is interesting to realise how much of the energy applied to X-ray tubes is wasted. Very few of the electrons that shoot across the gap between the filament and the anode target make direct collision with the atoms of gold against which they are directed. Most of them are simply deflected and lose all their energy in a series of what may be called half-hearted collisions. These contribute nothing to the X-ray beam, which is produced only by direct hits, and it has been estimated that at 250,000 volts the Metropolitan-Vickers tube has an efficiency of less than one per cent., generating not more than 30 watts of radiation. Even this does not complete the story of unavoidable waste, for much of the radiation is absorbed in the walls of the tube, and 80 per cent. of the beam that does leave the tube is taken up in the thin sheets of copper or aluminum that filter out dangerous radiations. The result is that at 40 cm., or 1 ft. 4 in. from the target, a distance commonly used for treatment, the intensity of the energy of the X-ray beam is only 30 microwatts per sq. cm., a microwatt being one-thousandth of a watt. How great is the need for protection is shown by the fact that even this beam would have a dangerous effect on the skin of the operator if he were exposed as for only six minutes. Special precautions are taken when using an X-ray tube to ensure that the radiations from it, carefully selected by means of metal filters, reach only the place where they are required for curative purposes. The patient is in a special room into which the anode end of the X-ray tube projects through a steel plate, and as this end of the tube is earthed, there is no risk of electric shock. The position occupied by the panel is shown at S in the diagram, and the upper illustration on this page shows one end of the 250,000 volt continuously evacuated tube at the Holt Radium Institute, Manchester, projecting from its supporting panel. The height of the tube can readily be adjusted, and the anode target and the port through which the X-ray stream can be rotated to enable the rays to be directed as required.

The rays from high voltage tubes are very penetrating, and are used for treating ulcers and other growths below the surface of the body. They are applied in carefully regulated doses and are completely under the control of the operator, who sits at a desk outside the room itself, and observes his patient through a window of glass that contains lead and is proof against X-rays. His desk is provided with switches and control wheels, and indicators show him how the tube and the generator that produces the high voltage direct current are working. The generator itself is an interesting application of the continuous evacuation principle, for the alternating current supplied to it is converted to the required direct current by means of thermionic rectifiers, which in effect are two-electrode wireless valves.

Continuously evacuated X-ray tubes are also made for analysing crystals of metals and alloys. When a beam of X-rays is allowed to fall on a photographic plate after passing through a crystal, a regular pattern is obtained that shows how the atoms in the crystal are distributed and gives useful information to those who work with these materials. The tubes designed for this purpose are readily dismantled and reassembled, so that there is no difficulty in renewing a filament, or changing a target, if the necessity arises, and are so simple to control that highly skilled attention is unnecessary when they are being used.

A particularly important application of the continuous evacuation principle is in the design of high power wireless valves in which no glass is used. The 500 k.w. valve illustrated is one of this type and is the largest in the world. It stands 10 ft. in height and weighs more than a ton! In the main transmitter at Rugby it has taken over the task previously performed by a bank of 50 high power valves. Its filament is made in no fewer than nine sections, through which passes a current of about 500 amps, or about 5,000 times that of an ordinary receiving valve.
IN this article we continue our description of the Meccano model of the L.N.E.R. locomotive “No. 10000.”

Last month the boiler and boiler fittings of the model were described. The Baldwin-Slatington portion. The upper edges and smoke-deflector, Figs. 1 and 2. An underneath view of the deflector is shown in Fig. 1, and from this will be seen the general construction of this part of the model. The main features of building the front girder, which consists of two 4½ Angle Girders overlapping five holes. The extremities of the complete girders each carry a 2½" Strip and an Angle Bracket. The two 2½" Strips are fitted with 9½" Strips at their free ends, and these form the outer edges of the deflector. The outer ends of the 9½" Strips are drawn together until they are 3½ apart, and the triangular space so enclosed is filled in as shown in the illustration. The oblong space remaining near the bottom of the deflector is used in actual practice as a trap for air, feeding the fire, and is fitted with a shutter that controls the volume of air passing through it. This system allows an adequate amount of hot air to be delivered to the fire-box under all conditions.

When the deflector is built up it must be curved to the correct shape, for which purpose the front of the already shaped boiler must be constantly referred to. When bent it is held in place at its lower end by the Angle Brackets shown in Fig. 1, and at its upper end it is attached to the boiler by the ends of the three centre Strips. The position of the Angle Brackets will be found on reference to Fig. 1 of last month’s article.

The chimney is constructed in the following manner. A 2½" Flat Girder is bent round the periphery of a 1" loose Pulley, and at each end is fitted with two 2½" Strips, the four being connected together by a ½" Bolt in order to give the desired tapered effect. Two 1½" x ¾" Angle Brackets are now fitted, and these carry two 1½" Strips, the end holes of which are connected together by a ½" Bolt, which passes into the top of the smoke-deflector when the chimney is placed in position. The top of the chimney consists of a 1" loose Pulley, held in place by means of a 6 B.A. Bolt, the Shank of which passes through the slotted hole of a 1½" x ¾" Angle Bracket attached to the chimney. The complete chimney is attached to the deflector by the ½" Bolt already mentioned, and also by an Angle Bracket, part of which is shown in Fig. 2.

Building the Main Frames

Fig. 8 shows the construction of one side of the main frames, and from this it will be seen that two 2¼ Angle Girders, overlapping 12 holes, form a base on which is constructed the remainder of the main frame and also the bearings for the wheel axles. The top of the frame that carries the driving wheel axles is strengthened by fitting five 5½" x 2½" Flat Plates and one 2½" x 2½" Flat Plate. Each Plate overlaps its neighbour one hole, with the exception of that at the rear end of the strengthened portion. The upper edges of these plates are coupled together by a girder consisting of one 3" Angle Girder overlapping an 18½ Angle Girder two holes, and this latter in turn overlaps a 9½ Angle Girder four holes. The front end of the frame is fitted with a 2½ Angle Girder, which will be used later for joining the models of the main frame together. An 18½ Angle Girder is now fitted to the near end of the frames, and this carries a Boss Bell Crank, which is used for supporting the rear pair of wheels. In the actual engine these wheels are carried on a Bissell truck, but in the demonstration model it is advisable to fit them as described owing to the fact that they are raised off the rails.

Each side of the front Bogie is constructed from a 7½ Flat Girder fitted with a 7½ Angle Girder and attached, by means of a 3½ Angle Girder and two Flat Brackets, to a 4½ Angle Girder. This last Girder is secured by two Bolts to the underside of the main frame, and 2½" large radius Curved Strips are fitted to the Bogie as shown, so that the main frame appears to be cut away in order to accommodate the Bogie wheels. When the two frame sides have been completed they are joined together by bolting a 7½ Angle Girder, carrying the buffer beam and buffers, across the front of the frames. The Girder is held in place by means of two 1½ x 1¼ Angle Brackets, and the two ends of the Girder overhang the frames three holes, thus making the frames 4½" wide. The lower edges of the Bogie are jointed together by two 4½ x 4½ Double Angle Strips. The rear ends of the frames are coupled together by two 4½ Angle Girders overlapping each other five holes and overlapping the frames two holes on each side. Three intermediate struts are fitted between the frames and these consist of 4½ Angle Girders bolted to Trunnions. A 4½ x 2½ Flat Plate is secured between the Angle Girder at the front of the model, and above this is carried two 5½ x 2½ Flat Plates shown in Fig. 6.

The front footplates are now fitted, and consist of two 2½ Angle Girders, one of which is shown in Fig. 8. A 2½ Angle Girder is soldered to the side of this, but running parallel to it is bolted, in the end hole of the Girder forming the buffer beam and is connected by a 3½ Curved Strip and a 3½ Strip to two 7½ Angle Girders representing the side of the footplating. These are extended at their rear ends by a 3½ x 3½ Flat Plate. A 9½ x 4 Flat Plate is fitted to the complete girder carries one 2½ x 2½ Flat Plate and one 5½ x 2½ Flat Plate. The latter Plate overlaps the 2½ x 2½ Flat Plate one hole. Each support for the rocking links of the valve gear consists of two Girder Brackets joined together at right angles by a 4½ x 4½ Angle Bracket. The whole is connected to the main frames by a 1½ x 1½ Angle Bracket and a 2½ Flat Girder. A 1½ Triangular Plate is bolted to the extremity of each outside Girder Bracket. Each side of the rear of the main frame is shaped from Flat Girders of varying lengths secured to a 12½ Angle Girder attached at one end to the main inner Girder by a 1½ x 1¼ Angle Bracket. The other end of this Girder is bolted to the outer extremity of one of the 4½ Angle Girders mentioned earlier. The cab steps, built up from 2½ Flat Girders bolted to 2½ x ¾ Double Angle Strips, are fitted.
to the rear of the main frames as shown in the illustration.

The front bogie wheels consist of Face Plates on each of which is mounted a Wheel Flange. The axles, 5 Rods, are journalled in Double Arm Cranks bolted to the top of the 7¼ Flat Girders forming the bogie sides. The front axle carries a 1¾ Sprocket Wheel and the second axle carries two Sprockets of a similar size. One of the two latter Sprockets is connected by Sprocket Chain to the Sprocket on the front axle. The two front wheels are protected by guards made from 1¼ Reversed Angle Brackets. Each of the main driving wheels is constructed from a Circular Plate and a Hub Disc, a Bush Wheel being bolted in the centre of the wheel so formed, to enable it to be secured to an Axle Rod. A Double Arm Crank is also fitted to each wheel in the position shown in Fig. 6. The Wheels are mounted on 5¼ Axle Rods journalled in Double Arm Cranks and the three Wheels on one side of the locomotive have their cranks set at an angle of 90 degrees to those of the other side.

The Double Arm Cranks on the front and rear wheels are connected to those on the centre wheels by means of 7½ Strips, the Strips being so arranged that they overlap each other three holes at the point where they are fitted to the centre wheels. Three Bolts are used for attaching the Strips to the front and rear wheels, and 1¼ Rods are used where they are connected in the centre. The 1¼ Rods each carry a Crank, termed the return crank, so arranged that it moves a little in advance of the crank pin when the locomotive is travelling forward. The front and rear 5 Rods each carry two 2½ Sprocket Wheels. One of each of these is used for connecting the front and rear set of driving wheels together; the remaining two connect the driving wheels with the 1¼ Sprockets on the bogie axles. The front pair of wheels, of what appears to be a rear bogie, is on a 6¾ Rod journalled in Double Arm Cranks. These Cranks are partly hidden by axle-boxes, each of which is constructed from two 1¾ x 1¼ Angle Brackets bolted to laminated springs by a ½ Bolt. This Bolt also carries a Hinge fitted with a 1½ Bracket forming the axle-box flap. Each laminated spring is built up from two 2¼½ x 2¼ Strips, and the whole is supported by two Handrail Supports.

Each cylinder is built up in the following way, and care must be taken to see that a right-hand and a left-hand cylinder are constructed, not two for the same side. Two Sleeve Pieces, using 1¾ Bolts with their shanks outward, are bolted by their centre holes to the end slotted holes of a 2¾ Angle Girder, and matters are so arranged that these fall on the inside of the Girder. Five 4¼ Strips are now curved to the shape shown in Fig. 1, and bolted by means of Set-Screws to the 2¾ Angle Girder, a 2½ Strip being used for spacing purposes beneath the heads of the Set-screws. The simplest way of bending the Strips is to press each one separately round the circumference of a wooden roller 1½ in diameter, a bend being made in the last hole but one in the opposite direction to the curve. The free ends of the Strips are connected together by a 2¼ x 1¼ Double Angle Strip, a second Double Angle Strip being used in the centre of the Strips.

These two Double Angle Strips carry two 1¾ Pulley Wheels that form the ends of the cylinder. A third 2¼ x 1¼ Double Angle Strip is used to form a connection between these Pulleys and the Sleeve Pieces forming the valve chest. Drain cock pipes are fitted to the underside of the cylinders, and these are constructed similarly to the handrails on the boiler. The cylinders, when completed, are each secured to the main frames by locking the ½ Bolts protruding from the top of the steam chest to the outer holes of two 1¼ x 1¼ Double Angle Strips. These Double Angle Strips are bolted between the main Girder of the footplating and the main frames.

A further support is formed for the cylinder by substituting two of the Bolts securing the free ends of the Strips of the cylinder for two 1¼ Bolts. The ends of these are passed through suitable holes in the main frame and are locked in position by two nuts.

Fig. 3. This illustration shows the boiler end complete with all its various fittings.

A 7¼ x 7¼ Angle Bracket secures the slide bar, Fig. 6, to its cylinder. This consists of two 5½ Strips spaced apart at each end by one Washer, and the lower strip carries an Eye Piece, the overlapping portions of which slide between the two Strips.

A 7¼ Bolt secures in the boss of the Eye Piece a 7¼ Angle Bracket and a Strip Coupling, the coupling being spaced from the Angle Bracket by a Washer.

The valve gear, which is an accurate reproduction of Walschaerts valve motion, is now proceeded with in the following manner. The Strip Coupling already mentioned carries the pin rod, a 3¾ Axle Rod, in its drilled hole, and the slot at the opposite end of the Coupling is fitted with one end of a 9¼ Strip. This Strip forms the connecting rod, and it is attached to the Cyclinder Rod by passing its free end over the 1¼ Rod that is carried in the boss of the Double Arm Crank bolted to the centre driving wheel. The position of which has already been described, is secured to the 1¼ Rod on the outside of the connecting rod. The Angle Bracket secures the 1¼ x 1¼ Strip Coupling has a 2½ Strip pivotally attached to it, and this Strip in turn carries a 3¾ Strip. This latter Strip is secured by its next to top hole to a Collar, a Set Screw being used for this purpose in place of a Bolt. The Collar is carried on the side valve Rod, a 3¾ Rod, that is journalled in Cylinder Adaptors carried in the Sleeve Pieces forming the steam chest. The top hole of the 3¼ Strip is fitted with a pivotally mounted Strip connected by one 1¼ and one 3¼ Strip overlapping two holes. The free end of the Strip is carried, together with a 1¼ Strip, on a 1¼ Bolt clamped in the boss of an Eye Piece. This Eye Piece is almost vertically on the reversing link that is built up from two 2½ large radius Curved Strips spaced apart at each end by means of two Washers.

The outside Strip of the link is carried on a lock-nutted bolt secured to the Triangular Flange the fitting of which has already been described. The lower securing Bolt of the link carries a Flat Bracket, and this is connected by two 3¼ Strips, overlapping two holes, to the return crank on the centre driving wheel. The top hole of the 1¼ Strip, attached to the 2½ Strip and lock-nuts to a 2¾ Strip that is bolted to a Crank, thus forming a lever 2½ long. The Crank is mounted on a 6¾ Rod, journalled in Handrail Supports, that runs transversely on the main frames; main frame connections are formed between the two reversing links of the valve motion. The Rod also carries a Crank fitted with an End Bearing, and this will be connected later as a lever arm.

Brakes are fitted to all six driving wheels, but in the model they do not work. They may, however, be coupled together, and operated from a lever in the cab. The brakes on the front and centre driving wheels consist of 3¼ Strips, fitted with Flat Brackets, carried on ¾ Bolts. Those on the rear wheels consist of 2¾ Strips, fitted with Flat Brackets, and carried on ¼ x ½¼ Angle Brackets. Sand pipes, constructed on similar lines to the handrails on the tender, are fitted to the front and centre driving wheels. When the main frames have been completed the supports for raising them above the level of the rails have been fitted. At the front end of the supports is formed from two 4¼ Angle Girder (see Fig. 1 of last month's article). These two Girders are bolted together to form a reversed angle girder, and are attached to the main frames by means of the foremost 4¼ x ½¼ Double Angle Strip of the bogie. The remaining 4¼ x ¾¼ Double Angle Strip is fitted for two Double Arm Cranks carrying 1¼ Rods, the lower ends of which rest in Bush Wheels.
screwed to the board of the model. The supports at the rear of the main frames consist of Couplings secured by means of two Bolts each to the cab steps. The steps are prevented from distorting under the weight of the engine by securing a Rod between the two Conns, this Rod being held in the centre plain hole of each Coupling. The lower ends of the Rods are carried in Bush Wheels as before.

Constructing and fitting the Cab

The framework of the cab is shown in Fig. 4. The floor consists of four 5¾"×3¾" Flat Plates bolted together to form an oblong 8¾" in length and 5" in width. Two 1¾"×1½" Angle Brackets and two ¾"×1¾" Girders, overlapping one hole, are fitted to the front end of this platform, the Girders being used for carrying the front wall of the cab. This wall is built up from seven 7¹⁄₄" Strips, shorter Strips being used at each side in order to obtain the desired shape as shown in the illustration. When all the Strips are in place, a 5¾" Strip is bolted horizontally across the back of the wall and 10 of the Strips are fitted to this, the centre one not being secured until the end of the boiler is in place. The four ¾"×1¾" Angle Brackets are now fitted; these are used later for securing the complete cab in place.

The fire-box door is built up from two 2½" and two 2½" Flat Girders, joined together as shown in order to form the sides of the screen. The bottom end of each is fitted with a 1½" Angle Girder by means of which the whole is secured to the cab floor. Two 1½"×1½" Double Angle Strips are now bolted across the top of the screen and a 1¼" Flat Girder, slightly curved, represents the glaze deflector. This Flat Girder is held in place by means of a Flat Bracket at its upper edge and by two ¾"×1¾" Angle Brackets at its lower edge. The spaces between the sides of the screen and the deflector are filled in by the Flat Brackets. The fire-box door consists of a 1¼" Flat Girder, the hinges of which are represented by two Flat Brackets and the lift bar by a short length of Spring Cord. Part of the door is shown in Fig. 3.

The lever frame is built up in the following manner. The sides consist of Flat Trunnions joined together at each upper corner by a 1½"x½" Double Angle Strip. A 2½" Strip is fitted to one side of the frame and a 1½"x1½" Angle Bracket to the other. These two parts are used for securing the lever frame in position. The near side of the frame, shown in Fig. 4, is filled in by means of a 1½" Strip and a 1¼" Flat Girder, held in place by means of Flat Brackets. The top consists of two 2½" Strips, curved to shape and clamped in position at each end by a 1½" Strip. The three levers, two of which are dummy, are carried on a 2½" Rod, Collars being used for holding them in position. In actual practice the levers, starting from the right-hand side, are used for reversing the low-pressure cylinders, reversing the high-pressure cylinders, and opening the cylinder drain cocks. On the model only the centre lever is used, this being for actuating the reversing links on the valve-gears. A Flat Bracket is attached to this lever, and a Collar, carried in the end hole of this, supports one end of a 3¾" Crank Handle. The inner end of the Crank Handle is coupled, when the cab is in position, to the End Bearing, shown in Fig. 6, by 1½" and 4½" Rods. These Rods are joined together by means of Couplings.

All is now ready for fitting the cab in place inside the boiler. This is accomplished by bolting the six Angle Brackets already mentioned to the inside of the cab sides in the position shown in Fig. 3. The short strips at the top of the front of the cab are altered, if necessary, to conform to the shape of the boiler, and the cab fittings and plate work are completed.

The end of the boiler is first fitted. This consists of a Flanged Disc (Part No. 168a) to which is bolted a 3¾" Flat Girder, spaced away from the boiler end by means of three Washers. The Flat Girder is bent outward slightly at the right-hand side, and this enables the driver, in actual practice, to get a clear view of the gauges. Two large Corner Brackets shown protruding below the Flat Girder are now fitted, the left-hand one of which carries the oil replenishing tank for the telemeters. This is represented by a Chimney Adaptor secured by means of a 4½"x4½" Angle Bracket to its respective Corner Bracket. The pipes leading to the telemeters are connected at the top by Cord. The right-hand side of the Cab has a Corner Bracket carrying a Threaded Pin on which is mounted a small Flanged Wheel representing the manifold pressure gauge. The manifold will be described later. The four large gauges fitted on the Flat Girder, starting from the left, correspond to the following on the actual engine. The vacuum brake gauge, the boiler-pressure gauge, the high-pressure steam chest pressure gauge, and the low-pressure steam chest pressure gauge. The small gauge is the train heating pressure gauge. The pipe-loops below the gauges consist of short lengths of 23 S.W.G. wire.

The regulator is in the top left-hand corner of the cab and it consists of a Coupling mounted on a Threaded Pin as shown in Fig. 3. The regulator handles, of which there are three, are represented by two lengths of Spring Cord. The right-hand end of the Cord, which is carried by the shank of a Spring Buffer. Two ¾"x1¾" Angle Brackets are also held in place by this Bolt. One of these Angle Brackets carries a handle formed from a Flat Bracket and Threaded Pin, the whole of which is mounted on a lock-nutted Bolt. The Angle Bracket is fitted with a second similar Bracket by means of which the ejector is secured to the cab front. The top of a 3¾" Crank Handle is now fitted in place as shown in the illustration, and represents the lead to the vacuum pipe connections seen behind the coaches of a train.

The pressure reducing valve, shown on the right-hand side of the cab, is necessary, in the actual engine, in order to allow normal locomotive fittings to be used. In the model it is constructed from a Coupling, to which are secured two Threaded Bosses by means of ¾" Bolts. One of these Threaded Bosses carries a ½" Bolt in its horizontal tapped hole, and on this is mounted a Collar carrying a Pivot Bolt, representing the control handle for the reducing valve. The under side of the Coupling carries a second similar Collar on which supports the top end of a 3¾" Crank Handle carrying a Coupling half way down its length. This Crank Handle is held in place by a Collar secured to the cab front by a Collar. A 5½" Crank Handle, the top of which passes below the reducing valve, is used for this purpose.

The manifold is now built and fitted. This consists of a 3¾" Rod on which is carried three Couplings and four Collars. Two 1½" Angle Brackets, through the outer end holes of which the 3¾" Rod passes, are used for securing the manifold to the cab front. The left-hand side Coupling of the manifold carries a Threaded Pin, on which is secured a Collar supporting a 3¾" Crank Handle. The outer end of this Crank Handle is fitted with a Handrail Support, and the complete unit represents the blower fitted to an actual locomotive for causing a draught over the fire. Attached to the manifold are six handles, the uses of which are as follows: Starting from the left-hand blower, steam reversing gear, whistle, and air indicators. A Coupling is secured vertically to the right-hand end of the manifold by a 1½" Threaded Rod, and this represents the connection between the reducing valve and the manifold.

When the cab is completed the boiler is ready for securing to the main frames, and this is carried out as follows. The girders secured to the bottom of the smoke deflector, is bolted to the front of the main frames and in this way the front of the boiler is secured. At the rear, see Fig. 3, the cab floor is attached to the end gider of the main frames by three ¾" Bolts, eight 7½" Strips being used for spacing purposes.

Next month the construction of the tender and track will be described.

(To be continued)
Meccano Record-Changing Gramophone
An Interesting Automatic Model

MUCH has been done during the past few years to improve the accuracy and quality of gramophone reproduction, but until recently the mechanism itself has not been made automatic in action. There has been the disagreeable necessity of having to leave one's comfortable chair every few minutes to rewind the motor, or to stop it, in order to turn over the record or substitute another. These drawbacks have been overcome by the use of electric motors in place of clockwork mechanism. The motor is simply connected with the mains by means of a plug and a length of flex, and smooth and continuous running at unvarying speed is obtained without the least trouble, and at very little cost.

The second drawback, that of having to reverse or change the record by hand, has proved much more difficult to deal with. Large numbers of records occupy only one side of a disc, and with these the trouble is scarcely noticed, for an interval naturally follows the completion of each record; but the case is very different with records of long musical works that occupy both sides of two or more discs. Here the reversing and changing becomes a nuisance, and with operas and long orchestral works, such as symphonies, filling several discs, a great deal of the enjoyment of the music is inevitably lost.

The mechanical difficulties of producing an efficient automatic changer are many, one of the greatest being that of ensuring that the records shall be absolutely protected from damage during the use of the changer. A very efficient system was produced by the Gramophone Co. Ltd., a few years ago. Since that time expert opinion has been engaged continually on the task of simplifying and improving the mechanism, and they have now developed an apparatus that is remarkable for its efficiency and reliability.

This mechanism brings us within sight of the ideal gramophone, but there remains the drawback that only one side of each record is played. This defect is eliminated in a large proportion of H.M.V., and more recently also Columbia, recordings of complete works occupying several discs, by means of special couplings that bring successive sections of the record into correct sequence for automatic playing.

In view of the many difficulties that have to be overcome it is particularly interesting to learn that an automatic record-changing mechanism has been built successfully from Meccano parts by A. W. Booke, of Baarn, Holland. This keen enthusiast set out to build an all-electric gramophone from Meccano, and the results of his efforts are shown in the fine model illustrated on this page. The record-changing mechanism was designed by Booke himself and is not copied from any commercial design. We give here a brief account of its most important features, in the hope that it may be of assistance to other model-builders who may wish to construct a similar model.

Booke's mechanism is designed to play one side of each of five 10-in. records in succession, and then the other sides of the five. The turntable of the machine is rotated by a frictional h.p. electric motor by means of a belt drive. As each record is played through it is automatically removed from the table and replaced by another from a pile previously arranged on a carriage. The mechanism for this operation is driven by a suitably geared Meccano Electric Motor. The speed at which the turntable revolves is kept constant at about 78 r.p.m. by means of a governor, but it can be altered by turning a screw that adjusts the radius of gyration of the governor weights.

The five records to be played are placed on a carriage, which is seen on the left in the accompanying illustration. The Meccano Motor is switched on and the carriage travels slowly towards the turntable until finally it comes to rest exactly above it. Two vertical rods, which can be seen in the illustration, close to the side of the turntable, then rise until their tops are level with the upper surface of the bottom record. The carriage then reverses and travels back to its original position, but the bottom record is held by the rods and drops on to the turntable. The vertical rods then sink to their first position. When the record has been played the needle runs into the eccentric groove cut in its centre, and the wide swinging movement thus given to the arm operates a switch and stops the motor. The Meccano Motor then operates a Rod on which a sliding coupling is mounted, and lifts the pick-up clear of the turntable.

The record-changing mechanism now comes into operation, and the table is raised until it is on the same level as the edges of the two grab arms. These arms are shown raised in the photograph, and they then descend towards the turntable. The arms are pivoted to a Flat Plate at their lower ends, and connected by a chain and when the chain is pulled downward by the mechanism the upper ends of the arms move apart. The chain is then released, and a spring brings the arms together again, so that they grip the record that has just been played. They then move back with the record towards the carriage, their movement being derived from the Meccano Motor, which operates them through a gear-box by means of Sprocket Chain and Sprocket Wheels.

The mechanism appears in the front of the model in the photograph. When the grab arms are again drawn apart the record drops on to the pile of records on the carriage. The record is prevented from falling out on one side by the flanges of the Angle Girder of the arms, and on the other by the projecting shanks of J" Bolts secured in the elongated holes of the arms.

It should be noted that, owing to the manner in which the record is placed on top of the pile, its opposite side is presented to the needle of the pick-up when its turn arrives to be played again.

For the benefit of readers who wish to build an automatic gramophone of this kind it may be mentioned that although Booke's model is fitted with an electric pick-up in order to reproduce through a valve amplifier, an ordinary acoustic sound-box such as that described and illustrated in the "Suggestions Section" of the September 1931 "M.M." could be used if desired. A serviceable horn can easily be made either from cardboard or tin-plate.

The pick-up is mounted on an arm built of Angle Girder, and is pivoted so that it has free movement in all directions. It is electrically connected to a radio set in the usual manner. The Rod shown on the extreme right of the model moves the tone arm over to the rim of the record, and lowers it until the needle rests in the outermost groove.

Although the machine is designed to play five records it will work with a larger number if properly adjusted. All the records must be of the same diameter, however, otherwise the arms carrying the pick-up will have to be readjusted at each change of diameter.

To prevent the vibration of the electric motors or noise of the gears from spoiling the quality of reproduction, it was necessary to place rubber washers between them and the framework.
Meccano Model-Building Competitions

Novel “Picture” Contest

This competition offers a welcome change from ordinary model-building contests, and should attract a large number of entries. On this page appears a picture of a Meccano sailing ship. This picture, including the frame, is made entirely from simple Meccano parts bolted to a piece of cardboard that serves as a background. In spite of the fact that only a few parts are used, a very realistic effect has been obtained. In view of the great scope there is for making other pictures by this means, we are offering a number of fine prizes for the most interesting and novel Meccano “pictures” submitted to us by readers of the “M.M.”

We can assure intending competitors that it is great fun making pictures in this way, and there should be no difficulty in finding a suitable subject. Competitors may make any kind of picture they like best and may use any number of parts in its construction. A suitable subject would be a scene from a cricket match, and it would be quite easy to make realistic outlines of a batsman and bowler. Another good subject would be a street showing shops, and one or two big buildings such as a theatre and a church. A few minutes’ thought will provide many other ideas for making really good and easy-to-build “pictures” that can be represented with the quantities of Meccano parts available. Competitors who wish to increase the realism of their “pictures” may do so by painting the cardboard background in suitable colours.

In the case of the picture illustrated on this page, the sea was painted blue and the sky white.

After the “picture” is complete the competitor should obtain a good photograph of it. This may be taken either by the competitor himself or by a professional photographer.

Entries will be divided into two Sections as follows—Section A, for competitors of all ages living in the British Isles; and Section B, for competitors of all ages living Overseas.

The competitor’s age, name and full address must be written clearly on the back of each photograph sent in, and entries addressed to “Meccano Picture Competition,” Meccano Ltd., Binns Road, Liverpool 13. Entries for Section A must be posted to reach Liverpool not later than 30th March, 1935. The Overseas Section (B) will remain open for entries until 31st May, 1935.

It should be noted that photographs or drawings of prizewinning models become the property of Meccano Ltd. Unsuccessful entries will be returned if a stamped and addressed envelope is enclosed with the entry.

“Limited Parts” Simplicity Competition

This month’s competition differs slightly from previous simplicity contests. In past competitions of this type, competitors were allowed to include in their models as many Meccano parts as they wished; but in the present contest models must be built with not more than 15 parts, excluding nuts and bolts. Any kind of parts may be used, however, and models may represent any type of subject. The main things the judges will look for when awarding the prizes will be realism and novelty of subject. The Meccano parts used must not be bent or otherwise mutilated, and it should be clearly understood that the specified number of parts, 15, does not include nuts and bolts, any number of which may be used according to requirements.

The actual model must not be sent; a photograph or a good drawing is all that is required. The competitor’s age, name and address must be written on the back of the entry, and the number of parts contained in the model also must be stated. Entries should be addressed to “Limited Parts” Simplicity Contest, Meccano Ltd., Binns Road, Liverpool 13. Entries will be divided into two Sections, (A) for competitors living in the British Isles, and (B), for those living Overseas. Entries for Section A must be posted in time to reach Liverpool before 28th February, 1935. Section B will remain open for entries until 31st May, 1935.
Continental Church Built in Meccano
A Fine Architectural Model

ALTHOUGH the Meccano parts are designed specially for building models of machines and mechanisms, they can be used also with good effect for making models of architectural subjects. We have received a large number of fine models of this type from model-builders all over the world, and in order to encourage Meccano users generally to try their kind of work we organised some special "Architectural" Model-Competition, for which only of buildings, monuments and architectural subjects were. Each of these Contests attracted of really interesting entries, some have already been illustrated in "M.M.", and on this page we scribing a fine model of a modern mental church, built by J. Willems of Antwerp, Belgium. This competitor has been a keen Meccano enthusiast for many years, and has won several prizes in "M.M." model-building competitions.

The church is nearly 6 ft. in height from the ground level to the tops of the crosses that surmount the towers, and is approximately 3 ft. 3 in. in width across the base. The model does not represent any existing church, but was designed by Willems from his own ideas. It is constructed in a style now favoured on the Continent, and the cruciform design, which forms the main theme of the building, is used to advantage in shaping the great central window in the facade. The doors also are decorated with a cross design, but they are made from cardboard instead of standard Meccano parts, which rather spoils the Meccano interest in this portion of the building.

Angle Girders bolted across the tops of the doorways give a neat finish to these parts of the model, and further Angle Girders are used to form steps.

At each side of the central door, which is recessed into the face of the wall, is a column, and these are arranged so that they fit into the general scheme of the cross design of the large window. The central portion of the building between the towers is of very modern design, the work being carried out by skilful use of Plates, Flat Girders and Strips. This portion of the building is decorated with two pinnacles made from Rods fitted at their bottoms with Collars and at their upper ends with Handrail Couplings.

The upper parts of the towers are octagonal in shape and are topped with structures built in the form of crosses, made from Strips. Twin clocks with cardboard faces are mounted in the towers. Two clocks are really unnecessary on a building of this kind. A clock in only give the but this by placing a and leave any extra this pro for the decora- Cross-decora-

Meccano is well suited for reproducing architectural subjects in miniature, and a neat example of this kind is illustrated here. It was built by J. Willems of Antwerp, and won a prize in a recent competition.

Particularly well-built features are two slatted ventilators, one in the top of each clock tower, and they possess a very realistic appearance. The slats of these ventilators are formed from 2" Flat Girders and are fixed to the Angle Girders of the main frame by other Girders. The ventilators form part of the decorative scheme of the model, and additional embellishment is provided by designs cut in cardboard and tinplate. It is interesting to note the decorated glass effect obtained by using Braced Girders for the large windows over the central door and the vertical windows in the towers. It will be seen that the Braced Girders are fixed in an upright position and that the Strips are bolted across them to divide the windows into squares. There are many other points of interest in the model, but the description we have given will be sufficient to show that really worth-while work can be done in making models of architectural subjects. Readers who have not tried their skill in work of this kind should do so immediately for there is a great deal of pleasure to be had in this branch of model-building, and the scope is wide and varied.

Readers who build good models of this kind are invited to send details and photographs of their work to us, so that if suitable, the models can be illustrated in future issues of the "M.M."
A SYNCHRONOUS electric motor is a special type of alternating current motor. It has a multi-polar armature, and rotates at a constant speed that is governed partly by the frequency of the alternating current supplied to it and partly by the number of poles on the armature.

The complete Meccano model is illustrated in Fig. 320 and the upper illustration shows the armature separately. It will be seen that the armature is not wound with wire, and the action of the motor depends upon magnetic attractions and repulsions between the poles of the armature and those of the electro-magnets 8. A synchronous motor can only be started by rotating the armature at approximately its normal speed, and its action is best explained by supposing it to be running at this speed. As a pole of the armature approaches a pole of the electro-magnet, which we can suppose to be at the moment to be a north pole, south magnetic polarity is induced in the armature poles and it is then attracted. When the two poles are opposite to each other, the direction of the alternating current in the windings of the electro-magnet is changed, and the north pole of this magnet becomes a south pole. The south polarity of the armature pole lags behind, however, and as this pole swings past the electro-magnet owing to its impetus, repulsion then comes into play, thus continuing the rotation of the armature. This alternation of attraction and repulsion is repeated for each pole of the armature, which is thus kept in rotation. The motor constituting this model will be found to have a second speed, which is half the normal speed, but the motor is then less efficient than when running at its usual rate.

This motor can be used for driving models in the ordinary way, but it is specially interesting when used in the construction of a clock that operates without an escapement mechanism. Such a clock is quite simple to construct. First of all it is necessary to determine the speed of the motor. This is done by ascertaining the frequency of the current, which is indicated on the supply meter by a pointer, and double this, and then dividing it by the number of poles on the armature. The result will give the number of revolutions of the motor per second, and having this information it is only necessary to arrange suitable reduction gearing between the motor and the hands.

The model is essentially an electric motor but by fitting a commutator and brush gear it can be used to convert alternating current from a transformer to intermittent direct current.

The motor side frames are made from Hub Discs that are secured by 4\(\frac{1}{2}\) Triangular Plates to \(7\frac{1}{2}\) Angle Girders, and the frames are joined together by \(4\frac{1}{2}\) Angle Girders and \(2\frac{1}{2}\) Strips. The Strips are spaced from the Hub Discs by two Collars on each \(4\frac{1}{2}\) securing Bolt, and support the electro-magnets 8. These each consist of \(4\) Magnet Coils and Core. Elektrom Parts No. 1538 and 1539 respectively. The outer wire of the upper Coil and the inner wire of the lower one are connected to the frame, the remaining wires being connected together and to the inner wire of the other, the outer wire of the other. The remaining two wires from the second pair of Coils are connected to the Insulated Terminal 7. To facilitate making connections, 6 B.A. Bolts are arranged on the rim of one Hub Disc but are insulated from it. It will be noticed that opposite pairs of Coils are connected in series-parallel arrangement. Thus the current flows through first one pair and then the second pair, and returns to the Transformer through the terminal 6 that is in contact with the frame.

The armature is illustrated in Fig. 320a. This is built up by bolting eight \(1\frac{1}{2}\) Strips to each of two Bush Wheels, the ends of the Strips being connected together by \(3\) Bolts, each of which carries \(12\) Washers that form the poles of the armature.

If it is required to use the motor for converting alternating to direct current, a simple commutator should be made by arranging eight \(6\frac{1}{2}\) B.A. Bolts on a Bush Wheel. Alternate Bolts are in metallic contact with the Bush Wheel, the other four being insulated. Two Rod Sockets, secured to one of the Hub Discs, carry \(1\)‘\(\frac{1}{2}\)’ Rings on which the Cranks are secured. A \(\frac{1}{2}\) Strip is bolted between the Cranks, and the Pendulum Connection 8 is attached as shown but insulated by means of Insulating Bushes. The Bolt carries a terminal 8. The Pendulum Connection, which serves as a brush, is arranged so that the armature is in contact with one of the insulated 6 B.A. Bolts during the negative half cycle, and is in contact with one of the non-insulated Bolts (that is, in direct contact with the frame) during the other phase. In this manner one half of the complete cycle is cut out entirely, but it will be apparent that it is not possible to predetermine whether the negative or positive portion is cut out. With the arrangement as shown it will be found that sometimes on starting the motor, the direct current flows in one direction, and at other times in the other direction, but a reversing switch can be arranged in the secondary circuit if necessary. As half the cycle of the alternating current is cut out entirely, the resultant direct current is considerably only intermittent. The setting of the commutator in relation to the armature requires careful adjustment to produce satisfactory results.

It should be arranged so that the Pendulum Connection is in contact with one of the Bolts when the poles of the armature are midway between the magnets. When the cores come opposite the magnets the Pendulum Connection is between two of the commutator Bolts. A certain amount of difficulty will probably be experienced when first starting the motor. It is necessary to spin the armature at almost the exact required speed in order to start it, and if turned too fast it will not adjust itself to the required speed as it slows down. With a little experience it will be found fairly easy to start the motor, but it is quite likely that the first few attempts will be disappointing. It is a good plan to fix a Pinion on the armature shaft and if this cannot be spun quickly enough with the fingers, it may be turned by engaging a \(6\frac{1}{2}\) Rack that is drawn across the Pinion, thus causing it to rotate.

The model is suitable for use as a motor with a T6, 15M or a T6A Transformer, but if it is required to use it as a converter, to supply intermittent direct current, the T6A Transformer is suitable. The Transformer is capable of delivering a greater output. On this Transformer there are three pairs of output sockets and the 9 volt or \(3\frac{1}{2}\) volt output may be converted to direct intermittent current.
Stationary steam engines must be fitted with some form of governing device to maintain a steady speed and to prevent "racing" when the engine is relieved of its load, or in the event of a failure in the drive transmission. The governors operate on the principle of an influence of centrifugal force which causes weights on a rotating shaft to move outward, the extent of their movement being dependent on the speed of the shaft. The weights are connected by link motion to operate the governor valve, thus regulating the amount of steam entering the cylinder.

Another form of governor is fitted to the crank-shaft and varies the throw of the eccentric that operates the slide valve. The mechanism is generally embodied in the flywheel, and as the speed of the engine increases, the eccentric is reduced, thus diminishing the amount of steam admitted to the cylinder.

A model of this type of governor is shown in Fig. 321. The flywheel is formed from two Hub Discs bolted together back to back and secured to a Bush Wheel at the centre. The crankshaft is secured in the Bush Wheel and its end protrudes and carries the Rod Socket 1. A 1½ Strips is pivoted on the screwed shank of the Socket and is retained in place by means of lock-nuts. The weights 2 are each formed from three sets of four 2½ large radius Curved Strips bolted together with the ends overlapping two holes, and are pivoted on ½ Bolts 3, which carries also two ½ Strips. The connecting links 4, which connect the Strips, are pivoted to the weights and also to the 1½ Strips at the centre of the Wheel. One of the Strips is pivotally attached to the 1½ Strips by means of a ½ Bolt that passes through the boss of the Single-Throw Eccentric and also through the centre hole of a Threaded Crank. A ½ Strips is passed through the hole in the Eccentric and is screwed into the boss of the Crank, so that the rocking of the Crank, the Eccentric and about the ½ Bolt 5. The end of the Crank is pivotally connected to the outer end of one of the pivotally weights by means of a 2½ Strips 6 that is secured to the 1½ Strips about its central pivot 1. At the same time the link 6 pulls on the web of the Threaded Crank and so rotates the Eccentric about its boss. Thus the outward movement of the weights decreases the effective throw of the Eccentric according to the speed of the engine. As the speed is reduced, the Spring Cord pulls the weights together again and thus the Eccentric throw is increased.

Bucket type grabs are used extensively for handling loose material such as sand, gravel or earth, but for large blocks and stones it is generally necessary to resort to slewing, which takes considerably longer. An ingenious type of grab or handling large stones has been devised by Messrs. Buckingham & Co., and a model of this device is illustrated in Fig. 322. The Meccano grab can be used in connection with a model crane or excavator and can be operated by remote control or handled by operating miniature blocks of stone in a model quarry, etc.

The suspension block is made from two 2 Strips and 1 Corner Brackets, spaced apart about 1½ by means of ½ securing Bolts. The hoisting cord 4 is tied to one of these Bolts and the other Bolt carries a 1½ loose Pulley Wheel between which a Washer is placed for spacing purposes. The 2 Strips of the suspension block carry a 1½ loose Pulley Wheel and Flat Bracket, on a ½ Bolt secured to the end of each of the Strips. The closing "rope" 5 is tied at one end to the Flat Bracket and passes round one of the lower 1 Pulleys. It then passes round the 1½ Pulley and round the 1½ Pulley, to be passed up through the Strips of the frame and over a Pulley at the head of the crane jib. The ½ loose Pulley serves as a guide for the cord. To open the grab the weight is taken by the hoisting cord 4, and the cord 5 is paid out. The hoisting cord 4 is then pulled, and by hoisting on the cord 5 they can be closed to grip the article that is to be raised. The weight of the load increases the pull on the cord and in consequence the upper and lower Pulleys are pulled together and the grip of the 2 Strips of the Grab is increased. It is important that the hoisting cord 4 should remain slack when the grab is lifting a load. To release the load the cord 4 is hauled in and the cord 5 paid out.

The model crane or excavator to which the grab is fitted must have two hoisting drums that are fixed by bolts inserted through the Strips and screwed into the tapped bores. A Rod is passed through the lower Coupling and carries a Wheel between two 1½ Pulley Wheels to form a handle. A Strip Coupling is carried on the inner end of the Rod to hold one end of the hack saw blade, the other end of which is carried in another Strip Coupling secured to a Screwed Rod.
Model-Building Competition Results

By Frank Hornby

“September” Contest (Home Sections)

The principal prizewinners in Sections A and B of the “September” Model-Building Contest are as follows:

Section A (Home competitors over 14 years of age)

First Prize, Meccano or Hornby Goods value 3 3s.: C. Ingleby, Westgate-on-Sea, Kent. Second Prize, Goods value 2 2s.: H. Lee, Ardrossan, Ayrshire. Third Prize, Goods value 1 1s.: W. Reynolds, Birmingham.

Five Prize Bars of Meccano or Hornby Goods value 5/-: A. Bell, Whitechurch; W. Caton, Liverpool 8; P. Caudle, Birmingham; R. Hough, Wallington, Surrey; D. Uwins, Cambridge.

Section B (Home competitors under 14 years of age)

First Prize, Meccano or Hornby Goods value 2 3s.: J. Price, Wrexham. Second Prize, Goods value 2 2s.: C. Patterson, Hawick, Scotland. Third Prize, Goods value 1 1s.: G. Upcott, London, N.17.

Five Prizes of Meccano or Hornby Goods value 5/-: M. Bryant, Skipworth, Yorks.; V. J. Matthews, Wrexham; R. Simmons, Plymouth; A. Hands, Hillingdon, Middlesex; S. Whaks FAMILY, London, S.W.5.

The First Prize model in Section A is the heavy traction engine, illustrated on this page. The best feature of the model is its neat and finished appearance, and I congratulate its builder, C. Ingleby, on his careful workmanship. The wheels of the model are worthy of special mention, for owing to the peculiar design adopted in actual traction engine wheels it is difficult to reproduce them accurately in Meccano. The hubs of the wheels are made from Face Plates, the rims of Circular Strips and the spokes of 4¼ Strips, the diagonal strakes across the face of the wheels being represented by 2¼ Strips.

The drive to the main gear train of the model is transmitted by Sprocket Chain from the armature shaft of a 20-volt Meccano Electric Motor. The model is capable of travelling at two speeds forward or in reverse, and the gear ratios are such that the model is easily able to haul its burden along the ground. Steering is effected by means of worm and pinion mechanism, and the movement of the handwheel is transmitted from the steering drum to the front wheel axle by means of Sprocket Chain. The front axle is mounted on a Ball Race.

H. Lee submitted a neatly built model steam engine, which also is illustrated on this page. The hull is made from 12½ and 5½ Strips and was shaped without mutilating the parts used to any great extent. The fore and after decks are made from cardboard, and the deck rails from wire and ½ Bolts. Wire is used also for the wireless aerial, and Sprocket Cord for the rigging.

A well built model of a sports car chassis won Third Prize in this Section. This includes many interesting details and its construction shows that its builder went to considerable trouble to obtain good proportion between the different parts of the model. A 20-volt non-reversing Electric Motor, housed under the bonnet, drives the rear wheels through a three speed forward and reverse gear-box. From the gear-box the final drive is taken through a Universal Coupling to the axle, simple bevel gearing being used instead of the usual differential. The rear wheels are fitted with internal expanding brakes, but dummy brake drums and controls are fitted to the front wheels.

The great strength of Meccano structures when properly designed is displayed in a good model of a level luffing crane submitted by P. K. Lucas. The base of the crane will support a load of 10 stone, although the lifting mechanism is designed to handle weights up to only 30 lb. The model is nearly constructed throughout, and actual practice has been followed as closely as possible in reproducing the bracing of the jib and superstructure.

A realistic model of an Alder Romeo four-seater sports car, built by J. M. Price, was awarded First Prize in Section B, but unfortunately the photograph submitted is not suitable for illustration purposes.

A model steamship also was one of the prizewinners in this Section. The model represents an ocean passenger liner and was built by Carl Patterson. Good work has been done in shaping the superstructure, but from a Meccano point of view the value of the model is lessened by the fact that the three funnels of the ship are made from cardboard instead of from Meccano parts.

The model that won a prize for G. S. Upcott is a copy of a Thornycroft six-wheeled lorry. The chief measurements of the model are length 2 ft. 4 in., height 5 ft. 6 in. and width 6½ in. Each of the rear wheels is fitted with three tyres, and the manner in which this is done is interesting. Each wheel consists of two Boiler Ends bolted end to end with a Bush Wheel for the hub. Three 2½ Dunlop Tyres are then pressed on to the Boiler Ends, and the inner Boiler End on each wheel forms the brake drum. The chassis has Ackermann steering gears with three speed gear-box, clutch, differential, electric headlamps and direction signals. It is interesting to note that the lorry is capable of hauling a load of 80 lb.

“Resemblances” Contest

The principal prizewinners in this Competition are as follows:

Section A (Home competition)

First Prize, Meccano or Hornby Goods value 2 2s.: T. Wilson, Coventry. Second Prize, Goods value 1 1s.: H. Swan, Bromsgrove. Werca. Third Prize, Goods value 10/6: R. Nuttall, Burton-on-Wharfie, Yorks.

Six Prizes of Goods value 5/-: J. Baker, Eastbourne; Y. Cains, Dublin; W. Lewis, Garman, Carms.; G. Parker, Bury St. Edmunds; E. Tomlinson, Guildford; C. Wright, Swallow Nest, Sheffield.

Section B (Overseas Competitors)

First Prize, Meccano or Hornby Goods value 2 2s.: C. Court, Johannesburg, South Africa. Second Prize, Goods value 1 1s.: H. Parker, Brussels, Ontario, Canada. Third Prize, Goods value 10/6: A. Coppola, Sliena, Malta.

Six Prizes of Goods value 5/-: J. J. Jasper, Manly, Australia; J. Rodriques, Montreal, Canada; V. Butcher, Kapoaio, New Zealand; N. Mitchell, Carthage, New Zealand; D. Simpson, Otago, New Zealand; J. N. Soderberg, Falun, Sweden.

July “Errors” Contest

Section A (Home competition)

Section B (Overseas competitors)

First Prize, Meccano or Hornby Goods value 2 2s.: J. Rodriguez, Montreal. (37 errors.) Second Prize, Goods value 1 1s.: J. Marshall, Thames, N. Zealand. (34 errors.) Third Prize, Goods value 10/6: Escarras, Buenos Aires. (50 errors.)
A Belgian Boy’s Fine Model
Barendrecht Lift Bridge

A FINE lift bridge, which is said to be the largest of its kind on the Continent, is now in operation over the Oude-Meuse waterway near Barendrecht in Holland. The present bridge replaces an earlier bridge that consisted of four fixed spans and a swing bridge on the road from Rotterdam to one of the islands of the Dutch province of “Zuid-Holland.” Owing to the fact that the old bridge proved a hindrance to the shipping traffic to the town of Dordrecht, it was decided to replace it by a new lift bridge of the balanced counterweight type.

Illustrations of the new bridge appeared in the “Engineering News” pages of the “M.M.” for December, 1934. Each of the side legs of the hoisting towers is a latticed steel structure supported on two masonry piers. Each tower has provision for the winch and counterweight ropes, the supporting pulleys being arranged at the top of the legs a little above the span level. The winch house and control-room is placed on the left-hand side of the bridge in such a position that the operator has a clear view of the roads and the waterway.

On this page we illustrate an enormous Meccano working model of the bridge that has been built recently by a 13½ year old Belgian Meccano enthusiast, Marcel de Wilde of Hoboken.

The model represents the uniting efforts of six months’ hard work, and about 8,000 Meccano parts are used in its construction. Although the model has only two fixed spans instead of three as in the original, its total length is slightly over 6½ yards! The height of the vertical towers that accommodate the hoisting machinery for the lift bridge is approximately 6 ft. 6 in., and the length of the lift bridge itself is 4 ft. 9 in. The model is built entirely from Meccano parts and from the illustration on this page it will be appreciated that a tremendous amount of patient work was entailed in carrying out the details of its construction.

The power for raising the bridge is provided by an old type high voltage Electric Motor, the bridge being suspended by means of four sets of two sheave Pulley Blocks at each side. It is interesting to note that over 60 yards of Meccano Cord were required to reeve the blocks and to connect up with the winding gear.

Owing to the great weight of the lift span it was necessary to reduce the load that the Motor had to handle. This was done as in actual engineering practice by the provision of counterbalance weights. These are arranged to move up and down in guides made from Angle Girders and are carefully adjusted so that they just balance the weight of the bridge. With this arrangement very little effort is required to raise the span.

The entire structure is illuminated by means of numerous small electric lamps, and when lit up at night presents a fairy-like spectacle. Some idea of its huge size can be gained from the fact that its builder is able to stand between the main girders of the vertical towers.

There are many praiseworthy features in the model quite apart from the faithfulness with which it reproduces its prototype. For example, the skillful use of Meccano X Series parts in making the piers and some of the bracing greatly enhances the constructional interest of the model. The Hornby Rails, Points and Rolling Stock with which the roadway of the bridge is equipped play a great part in giving the model a life-like appearance.

The model was constructed from photographs, and as Wilde has never seen the actual bridge, his achievement is all the more remarkable.

This clever young Belgian has been an enthusiastic model-builder since he was five years old, and he built his first really big model when he was only 11. In March 1933 he obtained First Prize in a competition for model cranes, and since that time he has won other prizes.
New Meccano Models

Swing Boat—Spaniel—Gramophone—Steam Wagon, etc.

The imposing model swing boat illustrated on this page represents a fair-ground attraction that will be familiar to most readers. The base and side frames are first constructed by bolting 12½” Angle Girders across each end of a 5½” x 2½” Flanged Plate, and fixing further 12½” Girders near their ends. At the base of each pair of vertical Girders, a 5½” Strip is secured, and 5½” Strips brace the side frames to the base. Further 5½” Strips are bolted across the upper ends of the side frames. Each uppermost Strip carries two Angle Brackets, to which 12½” Strips are secured. The ends of the Strips are connected by 2½” small radius Curved Strips. An 11½” Axle Rod is journaled in the centre holes of the lower pair of 5½” Strips.

A landing platform is attached to one of the side frames, and consists of a 5½” x 2½” Flanged Plate, bolted by one side flange to the Angle Girders, and supported by 3½” Strips that are bolted to its end flanges and also to the Angle Girders. Steps are made from two 5½” Strips, between which five 2½” x ½” Double Angle Strips are fixed. The upper Double Angle Strip is attached to the Plate by Angle Brackets. A Sector Plate, attached as shown, forms an extension for the Flanged Plate.

The base of the swing boat is made from two 12½” Angle Girders connected across the ends by 3½” Strips. A 12½” x 2½” Strip Plate is placed between the Angle Girders and bolted to the 3½” Strips. A 5½” Strip is secured vertically to each corner of the base, and the upper ends of these are connected by 12½” Strips. Three 3½” x 2½” Flanged Plates are bolted between the 12½” Strips, one being placed at each end and one at the centre. Two 4½” x 2½” Strip Plates are secured between the Flanged Plates, and 12½” Strips are bolted along the edges of the top. The lower half of one side is filled in by a 12½” x 2½” Strip Plate, and at the other side two 5½” x 2½” Strip Plates are fixed and a 5½” Strip secured along their upper edges. The gap between the two Plates serves as a doorway, and two 3½” and two 2½” Strips form the side posts. The ends of the boat are filled in by 2½” x 2½” Flexible Plates and 2½” Strips.

Two Trunnions are bolted at the centre of the roof, and Cranks are attached to them. The bosses of the Cranks are firmly gripped on the 11½” Axle Rod that is journaled between the side frames. A Collar is fitted on one end of the Rod, and at the other end is a 3” Pulley Wheel carrying a Threaded Pin. The handwheel so formed enables the boat to be rocked to and fro, and if a Clockwork or Electric Motor is available it can be arranged to drive the model with fascinating effect. The Motor should be mounted at the base and reduction gearing arranged to drive a Rod carrying a Bush Wheel. The Bush Wheel would then be connected by a pivoted Strip to a Strip bolted to the 3” Pulley Wheel.

Parts required for Swing Boat: 10 of No. 1; 18 of No. 2; 6 of No. 3; 6 of No. 5; 8 of No. 6; 6 of No. 12; 4 of No. 12a; 1 of No. 13; 1 of No. 19b; 12 of No. 37; 2 of No. 38; 5 of No. 48a; 2 of No. 48b; 2 of No. 52; 3 of No. 53; 1 of No. 54a; 2 of No. 59; 2 of No. 62; 2 of No. 90a; 1 of No. 115; 2 of No. 126; 1 of No. 190; 2 of No. 191; 2 of No. 193; 2 of No. 195; 2 of No. 197.

Spaniel

The little model shown in Fig. 2 is quite simple to build and is sure to provide some amusement when completed. The body is formed from a 2½” x 2½” Flexible Plate that is bent double as shown and has four 2½” Strips forming the legs bolted to it. The Strips are fixed between pairs of Angle Brackets that make the body rigid. A 2½” Strip is bolted to a further Angle Bracket and forms the tail, and two additional Angle Brackets at the front have two Trunnions bolted to them. The Trunnions form the head and carry 2½” small radius Curved Strips representing the long ears so characteristic of spaniels.

A novel use is found for the Lighting Set in this model. One of the pea lamps is clamped between the two Trunnions to represent the animal’s eyes. It will be noticed that the one lamp can be seen on both sides of the head, and the clips for connecting to the battery are shown at the rear of the model. Two 2” Axle Rods are journaled in the lower ends of the legs and carry 1½” Pulleys so that the model can be pushed along.

Parts required for Spaniel: 5 of No. 2; 7 of No. 12; 2 of No. 17; 4 of No. 22; 12 of No. 37; 2 of No. 90a; 2 of No. 126a; 1 of No. 190; Lighting Set.

Gramophone

To build the realistic cabinet gramophone shown in Fig. 3, the side flanges of a 5½” x 2½” Flanged Plate are extended downwards by 2½” Strips that are secured to 4½” x 2½” Flexible Plates, the latter also being bolted to the flanges. At the top and bottom of each Flexible Plate a 2½” x ¾” Double Angle Strip is secured and the front ends of these are
connected by 2¼" Strips. At the front of the cabinet two 2½"×2½" Flexible Plates are used for filling in purposes and are reinforced by 2½" Strips and 5½" Strips as shown. Two Flat Trunnions are used for filling in the space between the rear legs below the 5½"×2½" Flanged Plate. The front of the cabinet is made to represent the two doors that give access to the horn and the record cupboard on an actual gramophone of this type. Knobs are represented by ¾" Bolts that are each held in place by two nuts.

A 2¼"×¾" Double Angle Strip is bolted between the upper pair of Double Angle Strips and a ¾" Bolt, passed up through its centre hole, carries a Bush Wheel representing the turntable. A ¾" loose Pulley is used for the sound box and is bolted to Flat Brackets that are fixed inside the cabinet by Angle Brackets.

![Fig. 4. Easy Chair.](Above)

![Fig. 5. Steam Wagon.](Below)

Easy Chair

The new Meccano Flexible Plates and Strip Plates are excellent for reproducing model furniture and the two examples illustrated in Figs. 3 and 4 show the realistic results that can be obtained. The Flexible Plates are used to advantage in the model easy chair in Fig. 4, and in a similar manner a complete Chesterfield suite can be made. Four 2½" Strips are used for the legs of the chair, and a 2¼"×¾" Double Angle Strip is bolted between the centre holes of the front pair. Two further 2½" Strips are attached to the Double Angle Strip and a second Double Angle Strip is bolted across the ends of these. Flat Brackets at the ends of the second Double Angle Strip are bolted to the centre holes of the rear legs, and one of the Flat Brackets can be seen in the illustration. The back of the chair is formed from two 2¾" Strips that are secured to the upper ends of the rear pair of legs, and Angle Brackets are fixed in both the lower end holes and centre holes.

The upholstered arms are made from two 2½"×2½" Flexible Plates that are bent over as shown, and bolted to Double Brackets at the front and ¾" Reversed Angle Brackets at the rear. The Reversed Angle Brackets are attached to the lower holes of the Strips forming the back. Curved Strips are fixed outside the arms. A 4½"×2½" Flexible Plate is bolted to Angle Brackets on the front legs and also to the two pairs of Angle Brackets on the chair back. A similar Plate overlaps the first and is bent round the back of the model to be secured to Angle Brackets that are fixed to the centre holes of the rear legs. A 2½" Strip is fitted between these Angle Brackets.

Parts required for Easy Chair:
- 9 of No. 5; 2 of No. 10; 2 of No. 11; 8 of No. 12; 32 of No. 37; 2 of No. 48a; 2 of No. 90a; 2 of No. 125; 2 of No. 190; 2 of No. 191.

Steam Lorry

The main frame of the model steam lorry (Fig. 5) is made by securing a Sector Plate to the end of a 5½"×2½" Flanged Plate by means of Angle Brackets. The lorry body is made by bolting 2¼"×2½" Flexible Plates to the sides of the Flanged Plate, and a 2½"×2½" Flexible Plate at the rear. Two 3½" Strips are bolted vertically at the front corners of the Flanged Plate and the upper ends of these support another Sector Plate that forms the top of the cab. The Sector Plate is braced by 2½" Curved Strips, and a 2½"×1½" Flanged Plate is fixed between the vertical Strips to complete the lorry body and also to form the rear of the cab. A Double Angle Strip is attached to this Flanged Plate by Angle Brackets and represents a seat, and Flat Trunnions are bolted to the lower Sector Plate to fill in the cab sides.

A boiler is made by bolting a 2½"×1½" Double Angle Strip to a Bush Wheel which is provided with seven Angle Brackets. A 2½" Strip is bolted to each Bracket, and the upper 2½" Strip is connected at the rear to the lower Double Angle Strip by a 1½"×1½" Double Angle Strip. The boiler is secured to the Sector Plate by means of ¾" Bolts, but is spaced from the Plate by a Collar on the shank of each Bolt.

Three 2½"×¾" Double Angle Strips are bolted together to form the chimney and are fixed to the upper Strip of the boiler. Two 1½" Strips form journals for the dummy crankshaft, and a ¾" Flanged Wheel on one end of this is connected by a rubber Driving Band to a ¾" Pulley on the dummy dynamo. This is represented by a Double Bracket that is bolted to the front lug of the Double Bracket forming the cylinder.

The model is steered from 1¼" Pulley on a 3½" Axle Rod that is journaled in a Reversed Angle Bracket and the lower Sector Plate. The lower end of the Rod carries ¾" Flanged Wheels, and a length of cord is wound twice round these and tied to the Double Angle Strip carrying the front axle.

Parts required for Steam Wagon: 2 of No. 2; 2 of No. 3; 11 of No. 5; 2 of No. 6a; 2 of No. 10; 2 of No. 11; 10 of No. 12; 1 of No. 15b; 2 of No. 18; 2 of No. 17; 1 of No. 18a; 2 of No. 19a; 4 of No. 20b; 1 of No. 22; 1 of No. 24; 1 of No. 23; 1 of No. 24; 4 of No. 35; 5 of No. 37; 5 of No. 37a; 8 of No. 38; 1 of No. 40; 1 of No. 45; 1 of No. 48; 7 of No. 48a; 1 of No. 51; 1 of No. 52; 2 of No. 54a; 4 of No. 59; 2 of No. 80a; 4 of No. 111c; 1 of No. 125; 2 of No. 128a; 1 of No. 186; 2 of No. 187; 1 of No. 190; 2 of No. 195.
Scenic Displays for Exhibitions

Clubs are now in the midst of the work of the second winter session and in many of them preparations are well advanced for the Exhibition that brings this session to an end. An Exhibition held at that time forms a splendid climax to the work of the indoor season, and gives excellent opportunities for the presentation of awards and prizes. It is always a happy affair, for most of the visitors are parents and friends of members, and these are delighted with the results of evenings spent at club meetings, and admire the resource and energy that go to the making of a typical Meccano club Exhibition.

In view of the publicity now given to these displays, it is important that there should be no hitches. Everything must be carefully planned in advance and steps taken to exhibit models and other club work as effectively as possible. It is of little use to introduce critical visitors to a mere array of models of various sizes arranged without discrimination, however admirable the models themselves may be.

Today more is expected from a Meccano club than this. As far as possible a definite model-building scheme should be adopted and the models should be placed in some appropriate setting. Dock and pithead scenes, workshops, carnivals and other displays have been arranged with considerable success in many Meccano clubs. Similar schemes can be based on local industries, or will be suggested by careful reading of the reports on the "Club Notes" pages of the "M.M.", and I shall always be glad to help officials of clubs who wish to show the work of their members to the best advantage.

Visitors greatly appreciate displays of this kind, and gain from them a better conception of the way in which the hobby is taking root. This is something more than a mere amusement. Members also derive more satisfaction from their Exhibition, and the models they contribute to it can be treated as competition entries as readily as if no scenic surroundings were employed.

Ordering Models from Headquarters

I strongly urge the inclusion in every club Exhibition of one or more of the models that may be obtained on loan from Headquarters, for these are examples of the highest class of Meccano workmanship that will inspire members themselves and impress visitors. A revised list of models was introduced a short time ago, and I shall be very pleased to send a copy of this to any Leader or secretary who has not yet received one.

There is one point in connection with these models to which I wish to draw your attention. Every model sent out is specially built and tested and at least five weeks' notice therefore is desirable. Delay also can be avoided by giving details of the electric current supply available when ordering a model.

Merit Medallions

This month I publish my usual list of Merit Medallions awarded during the past year. It is always a proud moment in a Meccano boy's life when he receives one of these Medallions, especially when it is presented to him with some formality at an Exhibition or concert, and I should like Leaders to make greater use of them than at present. The Meccano boy does not need any artificial stimulus to make him do his best on behalf of the club of which he is a member, but it is only right that enthusiasm, skill and energy should be recognised.

Two Merit Medallions are available each session in each club, and the award is made entirely on the recommendation of the Leader. There is no restriction in regard to the character of the work for which they are given, provided that it has been beneficial in some way to the club, and to the Meccano Guild generally. In some cases efficient work in an official position has been the basis of the award. In others excellence in model-building, in devising schemes for the club programme, or in strengthening the position of the club by attracting new members, etc., has earned the Merit Medallion for certain members, and I shall look forward to receiving as soon as possible the nominations of Leaders who wish to reward good work on behalf of their clubs carried out during the present session.

Notices of Coming Events

Another point I should like Leaders to keep in mind is the desirability of informing me as early as possible of coming Exhibitions. This will enable me to include announcements on this page that will be helpful in attracting visitors. On several occasions notices of this kind have led to the acquisition of keen Meccano enthusiasts as new members. The "M.M." goes to press early, and notices therefore should be sent to me at least a month in advance of the date of publication, but I can still include notices of Exhibitions in March in the next issue if I receive details within the next few days.

Proposed Clubs

Attempts are being made to establish Meccano Clubs in the following places, and boys interested in becoming members should communicate with the promoters, whose names and addresses are given below:

Buckley—Master F. Keighley, 192, Mold Road.
Clifton—Mr. H. Galpin, 23, Burton Road, E.5.
Langley—Master F. Sillito, 11, High Street.
Newtownards—Master J. Seeley, Hilcrest.
Stafford—Master D. Griffiths, 12, Cull Avenue, Littleworth.
Walsall—Master P. Goyley, 11, Guild Avenue, Leamore.
Whitstable M.C.—Membership is increasing and the club is growing stronger. Meetings are held in a room kindly placed at the disposal of members by Mr. H. W. Topham, and the club has made a great stride on forward. Model-building has been varied by operations on the club’s excellent Hornby Railway, and games and evenings. The Billiard Table is very popular and members are interested in competitions of all types. Club roll: 25. Secretary: I. Dale, “Maycott,” 77, Albert Street, Whitstable.

John Gulson Senior Boys’ School (Coventry) M.C.—Members are becoming very skilful model-builders, excellent rocket cars, steam wagons and motor cars having been among models built at home and brought to meetings for discussion and the award of marks. An excellent display was made with them at the Annual Visitors’ Day at the School, at which a Hornby Train layout also attracted great interest. Games, Balls, Albert Night and Competitions Nights are held regularly. Club roll: 13. Secretary: J. W. Fagg, Castle Hall, Rugby, Coventry.

Macmillan Grammar School M.C.—A model of a scenic railway has been built by members, and other models prepared for the club’s Exhibition and Sales. The club library contains a Marine Engine, a Travelling Crane Engine and a Grandfather Clock. Model-building nights continue to be held weekly, and recently additional members have been devoted to engineering lectures and technical subjects. The club library is growing rapidly and members make great use of copies of the “M.C. Student” published by it. Club roll: 15. Secretary: D. Warburton, Marple, Nr. Stockport.

St. James’ (Grimsby) M.C.—A model of a Baltic Tank has been built by members, who have been greatly interested in the construction of the sections of the ships and their application. The parts of the ship are club property, having been purchased by the club, and will be available for the construction of similar models. Other members have been interested in visiting the local gas works and making models of the apparatus there. Club roll: 8. Secretary: E. Dade, Wellowgate, Grimsby.

Glendale College (Westcliff-on-Sea) M.C.—The club has become active when school was resumed in autumn and many members have been held weekly. “The Log,” the club magazine, continues to be successful. Club roll: 10. Secretary: L. Bone, 69, Westcliff-on-Sea.

St. John’s School (Bridgwater) M.C.—The design and construction of games has provided interesting occupation for members, and the games themselves proved a useful source of revenue at a Sale of Work. A demonstration of work on the club lathe was given by Mr. G. H. Sanders, Leader, and members have been given the chance of various types. Electrical Experiments and Debates were other attractions at Interschools. Club roll: 19. Secretary: L. B. Temple, 46, Monmouth Street, Bridgwater.

Balham Grammar School M.C.—Models showing remarkable originality and constructional skill were entered in an Aeroplane Building Contest, and an equally successful day has been reached in other competitions. An interesting feature is “Meccano Products Night,” when model building speed boats, aeroplanes or any other products of Meccano Ltd. and arrange demonstrations or experiments. Hornby Train Nights and Games Evenings provide variety. An excellent impression was made on members when displayed at a Hobbies Exhibition held at the school. Exhibitions are arranged on Saturdays, those enjoyed so far being the “Hobby-Show” and the Croydon Air Port. Leader: Mr. R. Sharpe, Balham Grammar School, High Road, London, S.W.17.

Sid Vale M.C.—The excellent series of Model-building Competitions continues and members show great keenness and originality. A model Illuminated Carnival was a novel event. Tableaux were mounted on motor lorries constructed in previous contests, and these were paraded round the room at an Open Meeting at which prize winners were present. The winning tableaux in the Senior Section represented an old world garden, and the “Babes in the Wood” was the subject of the first prize-winning effort in the Junior Section. An enjoyable evening was spent at a Club Party, which formed the official opening for the session. Club roll: 25. Secretary: R. Geddon, Sheffield House, Sidmouth.

Brixton Grammar School M.C.—Excellent progress is being made and there is a steady increase in the club’s funds, which are to be devoted to providing prizes for Model-building Competitions, to additions to the Library. An excellent Lantern Lecture was taken in a working electric advertising sign carrying the words “Ipswich Meccano Club.” A Shooting Gallery was well patronised and Jig-Saw Puzzles made up of Meccano parts were displayed as a display of models of aeroplanes added variety to the display. About 300 visitors expressed their appreciation of the work of members. Club roll: 12. Leader: Mr. W. Sheppard, 28, Hornsby Road, Ipswich.

Clarence Avenue School (Harrow) M.C.—Four groups have been formed for competitions in Model-building and Games, and a prize is to be awarded to the winning group in each series of contests. Hornby Night has been held to introduce the Model-building Contests and Games Evenings, Catherine, Exhibitions and talks on Photography have been included in the programme. Club roll: 16. Secretary: Mrs. S. J. Biggs, 20, Cranleigh Gardens, Kenton, Harrow.

Buxted Boys’ Central School (Harrow) M.C.—A feature of recent work was the construction of a Training Semi-circular plane and demonstrations with it. A Lecture on “Motor Cars” was given by the secretary and talks on aquaria and similar subjects are also arranged. The “Gear Wheel,” the club’s magazine, continues to be successful. Club roll: 35. Secretary: F. Good, 57, Nursery Avenue, Buxted, Sussex.

AUSTRALIA

Melbourne M.C.—An excellent Meccano building for advertisement purposes has been built by one member. Others have made models for use with the railway layout. A special feature of the month was a visit of the chief operators of the Meccano Limited to the Machine Shop of the School. Another member trained his students in pulling objects off powerful electro-magnets in a second, and they always hesitated when asked to try a powerful electro-magnet. Club roll: 20. Secretary: L. Iron, 8, Hayes Street, Northcote, Melbourne, Australia.

CANADA

Edmonton Y.M.C.A. M.C.—A Meccano scene constructed by two of the members now hangs in the Y.M.C.A. Community Room. Pictures help will attract recruits. There is keen competition in Model-building Contests in which members construct entering at home for judging at meetings. Other events have included a Couesina Exhibition, a talk on “Physics” by Mr. E. Jordan, Leader, and a model of a factory with industrial plants. The extent and variety of the programme has ensured a very successful year. Club roll: 14. Secretary: J. Benge, 12031-96 Street, Edmonton, Alberta, Canada.

Toronto Central Y.M.C.A. M.C.—The grant of affiliation has been received with great enthusiasm and there seems to be a bright future for the club. Members were asked by the Y.M.C.A. to give a special display and quickly built a series of large models, which attracted favourable comments from visitors. Model-Building Contests are the chief features of the programme. A paper on “Railway Signalling” was greatly enjoyed by members, who are now planning a Hornby Train layout. Club roll: 36. Secretary: B. Moore, 141, Albertus Avenue, Toronto, 12, Canada.

NEW ZEALAND

Christchurch M.C.—The club’s 5th Birthday was celebrated at a Social, at which there was a large attendance of parents and friends. Members of the Auckland M.C. also arranged a display of models and a Hornby Train layout was on view, and Games, Competitions and形と 역할을 했던 토요일 쇼. 이들은 함께 행복한 밤을 보냈습니다. Club roll: 16. Secretary: H. W. Govan, 25, South Orchard Road, 4.

Ipswich M.C.—A remarkably successful Exhibition was held shortly before Christmas. The models were arranged in admirable scenes, and special interest was taken in the working electric advertising sign carrying the words “Ipswich Meccano Club.” A Shooting Gallery was well patronised and Jig-Saw Puzzles made up of Meccano parts were displayed as a display of models of aeroplanes added variety to the display. About 300 visitors expressed their appreciation of the work of members. Club roll: 12. Leader: Mr. W. Sheppard, 28, Hornsby Road, Ipswich.

Clarence Avenue School (Harrow) M.C.—Four groups have been formed for competitions in Model-building and Games, and a prize is to be awarded to the winning group in each series of contests. Hornby Night has been held to introduce the Model-building Contests and Games Evenings, Catherine, Exhibitions and talks on Photography have been included in the programme. Club roll: 16. Secretary: Mrs. S. J. Biggs, 20, Cranleigh Gardens, Kenton, Harrow.

Buxted Boys’ Central School (Harrow) M.C.—A feature of recent work was the construction of a Training Semi-circular plane and demonstrations with it. A Lecture on “Motor Cars” was given by the secretary and talks on aquaria and similar subjects are also arranged. The “Gear Wheel,” the club’s magazine, continues to be successful. Club roll: 35. Secretary: F. Good, 57, Nursery Avenue, Buxted, Sussex.
A Model “West Coast Postal”
Interesting G.P.O. Exhibit

At Euston Station, London, every evening about 7.30, bright red Post Office Vans begin to arrive with bags of mails for the well-known 8.30 p.m. “down special” postal train from Euston to Aberdeen. This travelling post office is made up of baggage vans, stowage vans and postal sorting vans with pick-up apparatus, and is usually hauled by a “Royal Scot” type locomotive.

Recently the Public Relations Department of the General Post Office decided to make this famous mail train the basis for a large working model showing the operation of the “Travelling Post Office.” The designing and making of the model was entrusted to Bassett-Lowke Ltd., of Northampton, who for years have made high-class exhibition models one of their specialities.

The exhibit was laid out on a table 120 ft. long, and consisted of 3½-in. gauge railway track, with double road and loops at each end, arranged for continuous running. Practically the whole of one of the 12 ft. diameter loops was in the form of a hill tunnel, giving scope for artistic scenic effects, grass, trees and hedges, which were carried out over the whole of the model and gave it a very realistic appearance. The centre of the track was occupied by a modern design main line station representing reinforced concrete, the booking office being surmounted by a clock tower. The station was complete with book-stall, waiting room, station-master’s office, station seats, etc., and was decorated with scale reproductions of railway posters. It also contained such distinguished passengers as George Bernard Shaw, Lloyd George, Ramsay MacDonald and Charlie Chaplin!

Scale model wayside pick-up apparatus was fitted at two positions along the track, enabling the model pouches or mail bags to be delivered and collected while the train was travelling at full speed. This operation was very skilfully reproduced in miniature, even to the ringing of the bell as in real railway practice.

From the model point of view the exhibit had several very special features. In the first place the whole of the locomotives, rolling stock, signals and railway buildings were made to the exact scale of 10 mm. to the foot and track was of the standard gauge of 1½ in. The two locomotives provided, one as a reserve in case of running trouble, were the “Royal Scot,” No. 6100, and the “Black Watch,” No. 6102, of the L.M.S. Railway. Every external detail on these locomotives and the vehicles hauled was faithfully reproduced to scale, and the train in use is operated electrically by means of the third rail system supplied with current at a voltage of 200 V.

The electric motors in the models were of special construction, made for long and continuous running. The magnets were of special cobalt chrome steel of exceptional strength, with 8-pole armatures with their steel shafts running in ball bearings. The collectors were of heavy gun-metal, arranged so that the shoes, which wear out quickly with constant wear, could be easily replaced. The gearing was worm and wheel type, the steel worm driving a bronze worm wheel in a gearing ratio of 20:1. The motor brush gear was of a special type with copper carbon brushes and brake section, which is easily renewable. The commutator was of phosphor bronze. The lubrication of the motors was a special feature. Small tubes were laid to each of the parts needing lubrication, and these were carried into a receptacle in the dome, so that the motor could therefore be properly oiled from the outside through a small hole in the dome. The control and operation of the model was from a signal-box near the station, where the controller and resistance were housed. The signals were of standard upper quadrant pattern.

The attractive model was first seen at “Radiolypa,” and during the short period of the exhibition the locomotives ran a distance of 125 actual miles. The model is to be seen in various parts of the country during the next few months.
Branch News

KILMAURS.—Very interesting meetings are being held, largely as a result of a discussion on weak points of previous sessions. The track has been rebuilt, new materials being introduced where necessary, and members enjoy meetings so much that they are invariably surprised when closing time comes. Next night also are a great attraction. An excellent Lantern Lecture on “Britain’s Largest Railway” has been given, slides being kindly loaned by the L.M.S.R. Secretary, J. Marshall, 52, Main Street, Kilmaurs, Kilmarnock, Ayrshire.

ADDISCOMBE.—A special meeting was held to celebrate incorporation, and members greatly enjoyed railway competitions arranged for the Special talks on “The Romney, Hythe and Dymchurch Railway,” “The Cheltenham Flyer” and other railway topics are given regularly by members. Railway trips on interesting lines are a special feature of Branch proceedings. A Cine-matograph Film illustrating French railway operation has been given, and last session concluded with Christmas Entertainment at which prizes were presented. Secretary: G. Chandler, 62, Ashburnham Avenue, Addiscombe, Croydon, Surrey.

BELFORT (CATFORD).—Members continue to hold meetings, in spite of the difficulties caused by not having a regular meeting place. More members are required and the secretary would be pleased to hear from Hornby Railway enthusiasts who would like to join, and also from anyone who can help the Branch to secure a permanent home. Secretary: F. B. Graves, 133, Bromley Road, Catford, London, S.E.6.

CAMPDEN GRAMMAR SCHOOL.—An excellent track has been laid down and provided with scenery executed by a member of the Branch. Meetings are held regularly on Saturdays and pupils at the school are invited to watch operations. Constructional work also is carried on, and special attention is being given to the making of electric colour light signals. Secretary: E. R. Ridgway, The Grammar School, Campden, Glos.

TERRINGTON HALL.—Great enthusiasm was shown when incorporation was granted. A splendid track has been laid down in the Branch room and this was officially opened, and the first train despatched, by Mrs. Littlewood, wife of Mr. T. B. Littlewood, President. The Branch track now represents the L.M.S.R. line between Crewe and Liverpool, and the inclusion of a dockyard provided with a Meccano crane adds greatly to the opportunities for interesting working. Secretary: J. M. Hutchinson, Maiden Hill, Penrith, Cumberland.

HOLLANDERS.—Steady progress has been made with the development of the track, to which sidings and electric signals have been added. Locomotive tests for speed and pulling power were followed by the operation regularly by members of the Branch. Secretary: A. Wakefield, 39, Elm Walk, Raynes Park, London, S.W.20.

CATERHAM SCHOOL.—Special interest has been taken in a series of Lantern Lectures on “Aspects of Locomotives” and other railway subjects by Mr. H. F. Wilmut, Chairman, and other officials. The track is now Branch property, thanks to the kindness of one of the members, hence, is not liable to be altered or reduced. Better working on well planned lines is possible, and more rails are to be purchased. Secretary J. D. Andrews, Brightling, Fir Tree Road, Banstead, Surrey.

MAIDSTONE.—A Branch room has now been secured and an excellent Branch track laid down permanently. A workshop has also been fitted up to enable members to carry out repairs and do constructional work. New members are required to show proof of interest and industry before admission. In an interesting Photographic Contest held recently there were classes for photographs of stationary and moving locomotives, and of general engineering interest. A talk has been given by Mr. W. H. Everden on his experiences as a model locomotive driver during last summer. Secretary: 29, Union Street, Maidstone.

AUSTRALIA

PARAMATTA.—The Branch layout has been considerably extended and improved by the provision of a large terminus with an interesting layout that has been accurately modelled. The signals are correctly interlocked and very realistic working is possible as a result of the care devoted to the design of the main track and the necessary sidings. Equally careful work is being carried out on the second terminus and intermediate stations, and steady running and attractive operations are being enjoyed. Chairman: Mr. H. H. Mattick, Secretary: Ross Street, Parramatta, N.S.W., Australia.

PERTH (WESTERN AUSTRALIA).—The Branch layout is being extended further, and the track is now planned on a larger scale. The rails are well ballasted and splendid running is obtained at track meetings. Scenery and lineside effects are now being given attention. The appearance of the appearance of the track has been greatly improved and the realism of operations increased by this work. Secretary: J. Stanbridge, 285, Lord Street, Perth, Western Australia.
WHEN a layout is being developed from the “plain circle and oval” stage, the miniature railway engineer invariably introduces points in order to increase the scope of operations. The line becomes more realistic as a result, and the attempt is invariably made to introduce branch lines, sidings and loop lines such as are commonly seen in actual practice. There are various methods of laying out these different track formations, and every Hornby railway owner will adopt whatever method suits his layout. Whatever the scheme adopted, it is essential to realise the possibilities or limitations of the different sidings schemes themselves, and in this article we propose to consider several different arrangements and their various advantages on a Hornby layout.

On a plain continuous oval track, difficulty soon arises from the fact that there is no suitable place for the storage of rolling stock. For instance, there is nowhere to leave the goods vehicles while a passenger train is being run. One siding at least is necessary for this purpose, and the simplest way of arranging this is shown in the first diagram of the series illustrated on the opposite page. Points are introduced into the main line, and as the curved portion of these corresponds to an ordinary curved rail in length and radius, it is only necessary to add a single curved rail to make the siding line parallel to the main line. The length of the siding will be governed by conditions, but in calculating the number of rails required allowance must be made for the buffer stops, which should be used to terminate any dead-end siding of this kind. The No. 1 Buffer Stops is the most suitable for an ordinary siding line and this is equal in length to a straight quarter rail. A dead-end siding of this kind is useful for the storage of rolling stock and in forming part of a goods yard, and also as a main line feature where traffic is not heavy.

The second arrangement shown is a development of the one just dealt with in that the single curved rail of the first scheme is replaced by a pair of points of the same type as those laid on the main line. This gives the effect of a crossover connection between the main line and the siding. The siding can be extended in both directions, the points coming in approximately halfway along its length as shown in the diagram.

At first it might be thought that this arrangement is hardly likely to be useful on a layout, but within its limits it is really quite a good scheme. It can be used by trains travelling in each direction on the main line, and vehicles can be picked up or detached by these trains as required. For instance, a train on the main line approaching the points in a facing direction, and requiring to detach some wagons, comes to a stand before the points. The engine and the wagons to be detached are then uncoupled from the rest of the train and run into the siding. The points are next set for the straight road of the siding and the engine, having been reversed, backs the wagons down the siding, perhaps up to the buffer stops, where they are out of the way and not likely to interfere with the movement of locomotives or rolling stock between the main line and the siding. The wagons also are in position to be picked up later by a subsequent train travelling in the same direction. If they are to be picked up by a train in the opposite direction, however, they must be moved to the opposite end of the siding. There may be other wagons to be left in the siding at the same time. If these are marshalled at the rear of the train they are shunted in after the wagons to be taken away have been picked up, but if they are next to the engine, they leave the train with it to effect the picking up, and are shunted in afterwards.

The only disadvantage to these two schemes is that a train has to be backed into or out of the siding, according to its direction of travel, each time the siding is used. This is considered to be an irritating process by some
miniature railway owners and it certainly takes time where a long train is involved. Where traffic is frequent this may prove to be a source of delay and in order to avoid this some form of loop line becomes necessary.

Continuous loop lines therefore appear in the next two illustrations in the diagram. The actual method of laying down the loop depends on the circumstances where the loop is required, and on the track material available. Ordinary turn-out points may be used as shown in the third diagram, in which the layout incorporates one left-hand point and one right-hand point. Curved rails are used, as in the first example, to bring the siding track parallel to the main line. The straight length of the siding between the two curved rails bears a fixed relation to the straight length of the main line between the two sets of points. The main line length is always longer than the siding, the difference between the two equaling the length of the two straight rails, one straight half rail and one straight quarter rail. In the diagram, therefore, as the main line section consists of six straight rails, the siding is composed of three full length straight rails and one straight quarter rail in between the two curves.

The loop line thus formed may be employed along the main line of a layout for accommodating a goods train when a passenger train requires to pass it. Such loops also may be laid down at stations to enable trains in opposite directions to pass on a track that otherwise is a single line. Another possible use is as a “run-round” loop at stations to enable the locomotive of an arriving train to be transferred from one end of its train to the other, ready for the return journey.

A neater arrangement that is more in accordance with actual practice is shown in the fourth layout; this involves the use of two crossover points, one left-hand and the other right-hand. The siding between them is of exactly the same length as the corresponding section of the main line and Hornby Double Track therefore can be used with advantage between the crossover points. A feature of interest in this method is that it gives short dead-end extensions of the siding, beyond the switch rails of the crossover points, which in practice are invariably terminated by the buffer stops. Where space permits, these dead-end extensions can usefully be lengthened in a similar manner to that employed in the second scheme.

This method of arranging a loop line with crossover points is particularly useful in that it keeps down the width required for the track, which is a point of importance, particularly in stations.

Sufficient length for running-round purposes must be available, for the engine will not be able to get round the train if the coaches cannot be accommodated clear of points at each end of the loop. From the point of view of saving length, therefore, the scheme shown in the diagram on page 120, and illustrated in the photograph on the same page, may be considered. Apart from its merits in saving length, it is an interesting arrangement that is useful in miniature railway practice. It is particularly suitable for terminal stations, but also may be employed as part of the layout of a locomotive yard. It involves the use of the Hornby No. 2 Turntable at one end of the loop, the connection of the loop and the main line at the other end being effected by means of ordinary turn-out points and a curved rail in the usual way.

It will be noticed that the Turntable and its “run-off” lines replace both the straight and the curved branches of the points that ordinarily would be employed, and the use of the Turntable enables an engine to be transferred rapidly from the straight track to the loop line. As there is no need for the engine to proceed beyond the Turntable, the usefulness of the arrangement in restricted parts of a layout as opposed to ordinary points will be appreciated. When used in this manner the Turntable acts as a traverser, in addition to its normal use for turning locomotives. An arriving engine can thus be turned, as required for its return journey, and directed on to the loop road quite easily and quickly by means of this arrangement. The scheme will probably be of interest to those who operate more or less intensive services but who have difficulty in finding room for the usual terminal loops and run-round facilities.

The scheme is particularly useful where suburban services employing tank locomotives are a feature of the traffic of the line, for the No. 2 Turntable will accommodate any of the tank locomotives of the Hornby Series, including the large No. 2 Special Tank. For tender locomotives the scheme is less suitable, but Hornby tender engines up to and including the No. 1 Special can be accommodated on the No. 2 Turntable.
L.M.S.R. “WEST OF ENGLAND” SERVICES

THIS month we are returning to a type of article that our correspondence has shown to be extremely popular with "M.M." readers generally, and members of the H.R.C. in particular. This takes the form of a consideration of the operating characteristics and other features of a section of a real railway system, with suggestions for their reproduction on a smaller scale with Hornby material. Many important systems have been dealt with from time to time in this way, and we frequently receive suggestions that other sections of our railways also should be dealt with.

A part of a system that is interesting in many respects is the section of the L.M.S.R. between Derby, Birmingham and Bristol. This was the "West of England" main line of the former Midland Railway and is certainly worthy of attention on the part of those who are on the look-out for a suitable prototype on which to base the operation of their own layout. This important L.M.S.R. line runs from Bristol up to Birmingham, where connections are made with the Western Division that enable various through workings to be carried out, as we shall see. Farther northward the Trent Valley main line of the Western Division is crossed at Tamworth, where the high-level station of the former Midland Railway is immediately above that on the lower line. The line then proceeds to Burton and onward to Derby, where the main portion of the Midland section is met. For the most part the gradients over this line are very moderate and it is therefore suited to model railway purposes, for most miniature railway systems are laid on the level, and scenic features usually are arranged to represent level country. There is, however, a notably steep section just to the south of Birmingham and special interest is attached to operations on it.

For the enthusiast who is keen on complicated routes and train workings, a reproduction even on a very small scale of the various L.M.S.R. lines in the neighbourhood of Birmingham will give interesting working, and the layout might even be arranged to represent the Birmingham district alone, with quite satisfactory results. Older readers no doubt will recall the sketch map that accompanied the article dealing with "The Pines Express" in the "M.M." for June 1929. This gave some idea of the alternative routes possible in a journey across the Birmingham area, and those who are unable to consult this issue have only to look at an L.M.S.R. map to realise the position. In modelling this section of line there are splendid opportunities for incorporating alternative and "round-about" routes, and the return loops that many Hornby train owners are keen to include in their layouts.

A further point of interest is the fact that New Street Station, Birmingham, is used jointly by the trains of the Western and Midland Divisions of the L.M.S.R., and a good example of co-operation between these two Divisions is found in the running of "The Pines Express." This train gives a through service from Liverpool and Manchester, via Birmingham and Bath, to Bournemouth, and except at week ends during the summer, passes through New Street, where the transfer from the Western to the Midland Division, and vice versa, is made. It is curious to note that whether northbound or southbound the train runs in the same direction through New Street Station! This train also conveys a through Great Western coach from Liverpool to Southampton. In miniature, as in actual practice, the inclusion of a G.W.R. vehicle in the L.M.S.R. train will add to the interest of its formation as a whole.

Mention of the G.W.R. reminds us of the services jointly operated by that company and the L.M.S.R. between Leeds and Bradford and various resorts in Devonshire. The train concerned in each direction is
known as "The Devonian," and forms another possible subject for reproduction on a Hornby layout. The L.M.S.R. Birmingham and Bristol main line is in fact closely associated with the G.W.R. in several respects. Apart from through workings, and the fact that Temple Meads station at Bristol is shared by the two companies, the trains of each run over jointly-owne tracks between Cheltenham and Gloucester. Again, for the distance of 20 miles or so between Standish Junction and Yate, the G.W.R. has running powers over the L.M.S.R. lines, an arrangement that appears all the more strange when it is realised that the services thus operated were once fiercely competitive and are still so to some extent. Working of this kind always appeals to the miniature railway enthusiast and interesting scenes as that shown in the lower photograph on this page may therefore be regularly observed on a miniature railway system based on the line we are considering.

If preferred, the layout as a whole might be made to represent any of the sections where G.W.R. interests also are found, rather than the complications of the Birmingham district. Thus the joint track between Cheltenham and Gloucester, or the section between Standish Junction and Yate, where running powers are involved, might be chosen as the prototype. The Bristol district itself also might be adopted, for it gives as much scope for a complicated layout as the Birmingham district, and has the added interest of inter-group working and exchange of traffic that occurs at Temple Meads.

At times of traffic pressure engine changes on through services, that would ordinarily take place at Bristol, are made at Gloucester, and L.M.S.R. trains such as "The Devonian" in charge of G.W.R. engines are taken over that company's line from Yate into Bristol and so on to the West. This is a specially interesting instance of working that can be practiced on a Hornby layout as a regular thing, and will serve as a good excuse for the mixing of locomotives and stock that often occurs on a model railway when two or more operators or "shareholders" are using their equipment together.

If a purely L.M.S.R. line is preferred and it is decided to restrict the line to the Birmingham and Cheltenham section, it will perhaps be desired to include a representation of the Lickey Incline, which for two miles has a gradient of 1 in 37\(\frac{1}{2}\). If a slope can be conveniently arranged the actual working can be closely followed. Ascending trains halt at Bromsgrove, the foot of the bank, and the assistant engine comes up in the rear. Although there is no such spectacular locomotive in the Hornby Series as the ten-coupled L.M.S.R. "Lickey Banker," that was especially built for assisting duties, the work may be undertaken by whatever suitable engine, either tender or tank, can be allocated to these duties.

With regard to descending trains, it is the custom in actual practice for passenger trains to stop at Blackwell at the top of the incline for a brake test, while freight trains halt at the same place in order to secure the hand brakes of sufficient vehicles to ensure a safe descent. Although these stops can be made in miniature they will not serve any purpose except in imagination. If the gradient is steep it may be advisable for the restraining hand of the operator to guide long trains down in safety. Much of course depends on the actual conditions obtaining on the particular layout, and it may be left to the judgment and experience of the individual operator to decide what is the best course to adopt.

For a layout representing a section of the former Midland line such as this, the Hornby No. 2 Special Locomotive is essentially the engine for express passenger services, for engines of the famous "Standard Compound" class undertake the bulk of the express duties between Birmingham and Bristol. Other engines of L.M.S.R. types in the Hornby Series may be employed with advantage to represent the different standard classes that are found almost everywhere on the system, and G.W.R. type locomotives of the Hornby Series can be used to represent that company over the whole of the layout, or on portions of it, according to the particular operating scheme adopted. It is interesting to note that for many years the G.W.R. "County" class engines were the largest passenger locomotives of that company allowed to run over the Midland lines between Standish and Yate. The use of the G.W.R. No. 2 Special Locomotive "County of Bedford" is therefore particularly appropriate in miniature working, although in practice larger engines are now permitted.
Hornby Accessories and Realism

Improving the Appearance of a Layout

It is probably true to say that all miniature railway owners desire their layouts to be as realistic in effect as possible. Some achieve a considerable degree of success in this direction, but others fall far short of it. In making comparisons between the two classes, it is invariably found that even a small layout of suitable track design and with carefully chosen accessories will be far superior, in its realistic effect, to a more expensively and complicated layout where the accessories are badly arranged or are missing altogether. A layout of rails alone looks extremely bare and devoid of life, although it may be of the greatest interest from the operational point of view.

A train service cannot be run with any pretence of realism if there is no station on the railway for the trains to start from, and to stop at. The Railway Stations in the Hornby Series are of attractive design, and the No. 2 Station has the important advantage that it can be extended in either direction by the use of additional lengths of Passenger Platform, attached to the main section by a special interlocking device. The goods department must not be overlooked. The No. 2 Goods Platform is fitted with a crane and is indispensable in any miniature railway yard where there is much shunting and exchange of traffic. The No. 1 Goods Platform is less elaborate and is not fitted with a crane, but it is quite suitable for yards where separate cranes are employed, or in situations where the traffic generally dealt with does not require to be lifted.

The safety of trains in actual practice is largely due to the reliability of the British signalling system, so that if a Hornby railway is required to have a good record of safety, it is necessary to provide the signals required to govern the movements of the various trains. If placed in the correct position on a layout these contribute a great deal to the general realism of the line. In order to accommodate the signals, proper signal cabins must be provided. The Hornby No. 2 Signal Cabin is noteworthy because provision is made inside it for the accommodation of a lever frame. By means of this, signals and points fitted for the Hornby Control System can be operated exactly as in real practice.

Telephone and telegraph systems are largely used in connection with signalling, and this fact, apart from the public services, suggests the placing of miniature telegraph poles at suitable intervals along the lineside. These poles look extremely well if their insulators are connected by dummy “wires” of suitable thread. Among other useful lineside accessories may be mentioned the Paled Fencing for enclosing the railway property, and the Paling Hut for the accommodation of the men working on the line. Then there is the familiar Watchman’s Hut complete with its brazier, a very necessary detail during foggy winters.

Of the accessories directly connected with the track, the Level Crossings take an important place, and with their white-painted gates they look most effective on double-track or single-track railways. They are made for the winter months. The Viaduct is another useful accessory, and striking effects are obtainable by its use, particularly when several sections can be used together to form a succession of viaduct spans.

When the locomotives are not actually in use, they may be housed in one or other of the Engine Sheds. These represent accurately the usual style of straight shed with double doors. Near to the Shed will be situated the Turntable, which is a useful accessory not only for turning the locomotives round, but also for depositing them from one track to another, where the layout is arranged to permit this to be done. Close at hand should be a Water Tank, without which no miniature locomotive depot would look complete. These Tanks may also be placed in goods yards for the use of shunting locomotives, and at stations where locomotives may take water while their trains are being dealt with.

Railway premises generally, such as goods yards, will require Lamp Standards, and although these may be dummy fittings used only for effect, it is preferable to employ those fitted for electric lighting. Loading Gauges are another feature essential in a goods yard.

Footbridges are effective, and may be used at or near stations according to local conditions, or to break the monotony of long straight stretches of track, due regard being paid to the actual purpose of a footbridge. Small accessories such as gradient boards and mileposts practically conclude the range of accessories of an actual railway character.
A NEW DOUBLETS CONTEST

It is nearly two years since last we gave our readers a series of doublet puzzles to solve, and therefore it will be necessary to explain anew the requirements of this form of word competition.

Many years ago the doublet puzzle was almost as popular as the crossword puzzle is to-day. It was invented by Lewis Carroll, the author of "Alice in Wonderland," to amuse his large circle of friends. They received it with great enthusiasm, and he was afterwards introduced to the public, with whom it caught on immediately and became quite a craze.

A doublet consists of two given words, each containing the same number of letters. The puzzle requires one word to be changed to the other by changing connecting words between. The connecting words are known as "links," and must differ from the preceding link by the alteration of one letter only. Only words of the same length may be used, obviously, and the test is to make the change in the smallest number of links.

To make the idea clear we give the following examples:
- Put LOAD in CART
- LOAD-lord-cord-card-CART
- Protect CAT from DOG
- CAT-cot-dot-DOG

In making the links only English words appearing in a standard dictionary may be used. Proper nouns, names of persons, places, etc., are not permitted. It is important to remember that the first solution arrived at is not necessarily the shortest. Competitors should go over in search of short cuts that will eliminate unnecessary links. Close study will often reveal overlapping links that may be removed.

The Doubles to be solved are as follows:
- Put CASH in BANK
- Steer SHIP from DOCK
- Uproot TREE from WOOD
- Make a RING of WIRE
- Count PARTS into MODEL
- Increase WIND into GALE
- Turn KEYS on RING
- Buy FISH from SHOP

In judging the entries, the 10 doubles will be considered as one contest, and prizes of Meccano or Hornby Train goods to the value of 21/-, 15/-, 10/-, and 5/- respectively will be awarded to the senders of the four solutions showing the lowest total of links used throughout. In the event of a tie for any of the prizes, preference will be given to the entry having the nearest or most novel arrangement.

It will be observed that the combination of the 10 doubles for judging purposes will ensure that a brilliant solution of one doublet will carry its full weight by offsetting any extent failure to secure the shortest chain in another.

Entries should be addressed to "Doublets, Meccano Magazine, Birns Road, Liverpool 13," and sent to reach this office not later than 28th February. There will be a duplicate set of prizes reserved for entries from Overseas readers, whose entries must reach us not later than 31st May.

Entries must be written on one side of the paper only, and each sheet of paper used must bear the competitor's name and address. The total number of links used must be noted on the first sheet.

February Drawing Contest

For our drawing competitions this winter we have decided to give our readers a free choice in the matter of subjects, and accordingly prizes are being offered each month for the best drawings or paintings submitted, irrespective of subject, size of the entry, or method of production.

Each month's entries are divided into two sections, A for those aged 16 and over, and B for those under 16, and prizes of Meccano products to the value of 2/- and 10/- respectively, are awarded in each section.

Entries for the February Contest must be addressed "February Drawing Contest, Meccano Magazine, Birns Road, Liverpool 13." and must arrive not later than 28th February. Overseas closing date, 31st May.

COMPETITION RESULTS

HOME
- December Drawing Contest—First Prize: Section A, T. R. SIMM (London, S.E.7); Section B, J. B. BOLTON (Dunstable); Section C, A. W. BARKER (Gillingham); Section D, S. GEARY (Burton-on-Trent); Special Prize: Section A, JAMES LOW (Sheffield); B. E. LUCKEY (London, N.W.1); Consolation Prizes: E. BERGMAN (Rudheath); D. B. MACLAREN (London, S.E.8); Holiday Story Contest—First Prize: T. G. BARNETT (Yarnton); C. J. FEIGEL (Birkenhead); B. B. POWELL (Dover); A. H. EVANS (London, S.W.16); December Feature Voting Contest—First Prize: D. G. LYON (Plymouth); B. E. BOLTON (Southampton); B. E. J. MILBURN (London, E.4); C. C. FOWLER (Oxfordshire).

OVERSEAS
- December Photo Contest—First Prize: Section A, R. DE SOREL (Singapore); Section B, J. F. ROSSA (Montreal); Section C, A. J. CABB (Cardiff); Section D, B. T. JONES (Sydney); Advertising Slogans—First Prize: A. L. MORLEY (Sydney, N.S.W.); Second Prize: E. H. BIRCH (Queensland); B. J. GAY (Toronto); 4. J. JOHNSON (Oslo, N.Z.).
H.R.C. COMPETITION PAGE

A "NIGHTMARE GOODS" DREAM

To travel on the footplate of a locomotive is the greatest desire of every railway enthusiast, but this privilege is seldom granted. Not long ago an H.R.C. member was fortunate enough to obtain permission to make a footplate journey on a night goods train. His excitement during the time until the day fixed for the trip got more and more intense until one night, after a particularly heavy supper, he dreamed of his prospective journey. Unfortunately in his dream matters got very mixed up and he travelled on an impossible train. A few days later we received from our member a description of the kind in which entrants are required to pick out as many mistakes as they can from a description of a journey.

Therefore we give below the account as we received it and H.R.C. members will agree that they have plenty of opportunity for finding mistakes. Competitors should make a list of as many errors as they can find, in the order in which they occur, on one side of a sheet of paper and on the other side be written the name, full address and H.R.C. number of each competitor. Here then is the story: "My journey commenced on a night freight from Cheltenham. We had a heavy load of 40 vehicles including meat for Birkenhead, steel from Sheffield and other places. The locomotive concerned was one of the G.W.R. "Atlantic" class built last year by the Vulcan Foundry Ltd. at their famous works at Gorton. The first part of the journey was more or less uneventful, the locomotive travelling with ease through the Severn Tunnel. The first trouble was a check experienced at Taunton where the new upper-quadrant colour-light signals obstinately refused to fall to the "all-clear" aspect. Eventually we passed Stafford and our engine picked up water from the troughs. We were now on the climb to Stoke summit, the highest point reached by a main line railway in this country and stopped at Blackwall for the usual banking assistance up the 1 in 36 gradient. Our booster-fitted engine, aided by the banker soon reached the summit.

Three miles north we passed "The Night Scoot" made up of the distinctive green and cream "Tourist" coaches used on this service. I got time to discuss it while it was hailed by two of the famous Stirling "8-foothers" as it flashed by us. Dawn was just breaking as we passed through the busy yards at Bakewell and stopped by the junction for train examination and a change of engines.

What a thrill I got when "Earl Marischal," the latest Doncaster 4-cylinder compound, came on! With its massive setting, the eight exhaust beats to each turn of the wheels sounded very strange. At this signal the goods passed through the busy manufacturing area beyond the town. Trolley coach had already passed it, but we were soon through its cavernous depths and passing over Derby. After Derby we negotiated the various junctions at Beckenham and so gained access to the Brighton main line. Part of our load was detached at Three Bridges and we then soon completed our journey to Dover Marine.

Prizes of Hornby Railway material (or Meccano products, if preferred) to the value of 21/-, 15/-, 10/6 and 5/- respectively, will be awarded to the four competitors in each section, Home and Overseas, whose entries list the largest number of mistakes in the story just told.

Every entry submitted for this contest must be clearly marked with the sender's name and full address and H.R.C. membership number. Envelopes containing entries must be carefully marked "H.R.C. February Nightmare Goods Contest" in the top left-hand corner and posted to reach Headquarters at Meccano Limited, Binns Road, Liverpool 13, or on or before 28th February. The closing date for the Overseas section is 31st May.

COMPETITION RESULTS

HOME
November "Rolling Stock Contest No. 3."—1. E. BRYAN (38188), Bletley Ferry, Sheddington, Herts.

Railway Photographic Contest

Prizes of Hornby Railway material (or Meccano products, if preferred) to the value of 21/-, 15/-, 10/6 and 5/- respectively will be awarded this month in each section, Home and Overseas, of the usual Photographic Contest for photographs of Any Railway Subject. Envelopes containing entries should be marked "H.R.C. February Photographic Contest" and posted to reach Headquarters at Meccano Limited, Binns Road, Liverpool 13, or on or before 28th February. The Overseas closing date is 31st May.

OVERSEAS

August "Lomogate Mixture Contest."—1. G. HALLACKE (17578), Cape Town, S. Africa. 2. O. FRAGALI (78198), Berlin, Kaiserin, India, 3. T. W. HANNERS (38888), Brussels, Ontario, Canada. 4. T. B. COXSTON (21200), Australia.

August "Drawing Contest."—1. S. D. KREIAUWA (17624), Torquay, Devon, 2. E. C. G. HATH (21350), West Penderhill Hills, N.S.W., Australia.

August "Photographic Contest."—1. A. A. BOLLEY (20880), Waik-Mastraich, Holland.
EVERYTHING PROVIDED FOR
The workmen engaged in building a new garage were about to leave for the day.
"Won't you clear up this wood and other material?" asked the owner of the house. "Some of it will be lost." "That's all right, sir," replied one of the workmen, "you'll find it all in the bill."

Hotel Manager (bragging about his band): A wealthy patron offered £100 for the violin on which this solo is being played.
Guest: "I can't afford anything like that, but I'll willingly give the player £2 to stop.
"What is your greatest difficulty in life?"
"Trying to sleep while my alarm clock rings."
She: "That's a curious thing!"
He: "A sundial. It tells the time by the Sun."
She: "How amusing these modern inventions are!"
"We put out the fire last night within ten minutes of arriving," said the fireman.
"Had it got a good start?"
"I should say so. Why, when we arrived there was nothing left but the basement."
"How did Brown manage to win the cross-country race?"
"He was dead beat and sat down for a rest."
"How did that help him?"
"He sat on a warp! next."
"How is it you are home so early from the theatre?"
"I came out after the first act."
"Why did you do that? Didn't you like the play?"
"Yes, it was a good show, but I couldn't wait. The programme said there was an interval of two years between the first and second acts."
"My teacher's awfully mean."
"Rush, you mustn't say that!"
"Well, she is! She asked for my knife to sharpen my pencil to give me a bad mark."
"So your son is still at the University?" inquired the visitor. "And what is he going to be when he takes his degree?"
"A very old man!" replied the father, with deep feeling.

TOO TRUE

UNANIMOUS
"Now children, stop quarrelling. Can't you ever agree?"
"We have agreed this time, mother. Bill wants the biggest piece of cake and so do I."
"I'm going to give you a piece of my mind."
"Just a small helping, please."
"Judge: You still say you're innocent, though six witnesses saw you steal the hen?
Prisoner: Your Honour, I could produce six thousand people who didn't see me."

A TALL ORDER

Workman (on top of scaffolding for new building): "Hi, Bill, chuck up that 'ammer!"
Tenant: "The people in the flat above you won't give me a minute's peace. This morning at one o'clock they were jumping up and down on the floor as hard as they could."
Landlord: "They woke you up I presume?"
Tenant: "No, I hadn't gone to bed."
Landlord: "Ah! You were working late?"
Tenant: "Yes, I was practising on my saxophone!"
"What you want Mr. Skindlet, said the doctor, "is a new lease of life."
"Yes," replied the miser. "That is, of course, if the rent is not raised."
"There's no doubt about it, young Roadhog is a live wire."
"That accounts for his shocking habits."

Wullie (on a visit to London with his father): "Are we going to a theatre the day?"
Sandy: "Nae, nae, ladde. We haven'a seen a thase show windows yit."
"Bill is a brainy fellow in business."
"Why?"
"He arranges football matches for men over fifty, for charity, and the day after he goes and sells them embrocation."
"I never worry."
"Never?"
"No, in the daytime I'm too busy, and at night I'm too sleepy."
"Yes," said the teacher, "a number of plants and flowers have the prefix 'dog.' For instance, the dog-rose, the dog-violet. Can any of you name another?"
"Please, miss," called a boy in the back row, "collie-flowers."

OPEN WIDE!

Fortune Teller: "You have the gift of oratory. When you speak I should imagine people listen open-mouthed."
Client: "That's right. I'm a dentist."
"I should love to look at it for ever," said the girl on her first visit to Niagara. "Wouldn't you?"
"Rather not," replied her brother. "I should just hate to have a cataract always in my eye."
Rastus: "Did you ever see a hen's egg as little as that?"
Sambo: "Much smaller! Why, Ah've seen 'em as little as two of does."
"I hear you are running a duck farm," said Bill. "Business picking up?"
"No," replied Dick, "picking down."
"Do I really need all this attention? asked the visitor of a negro attendant who was brushing his coat. "Yes, sah, you most decidedly do, sah," replied the Negro. "You see, I've broke."
Father: "Always remember, my boy, to think before you speak."
Son: "But when I do that, Father, the others have changed the subject."
Smith was asked by his teacher to make a sentence containing the word archaic.
"We can't have arches and eat it too," replied Smith.
Chairman of meeting: "It is safe to assume that a cycle of business is upon us."
Hard-hit shopkeeper: "Then let us hope that it is a bycicle."
The midshipman's knowledge was being put to the test.
"Suppose a sudden storm sprang up on your port side, what would you do?"
"Cast the anchor, sir," replied the boy. "And if another came aft?"
"Cast another anchor, sir."
"If yet another storm sprang up on the starboard?"
"Cast another anchor," was the reply.
And where are all these anchors to come from? demanded the examiner.
"The same place you are getting your storms from, sir."

PRESENCE OF MIND

Panting and perspiring, the tandem riders reached the top of the hill. "Ha, man, Joe," gasped Ned, "that was a stiff hill."
"Aye, it was an all," puffed Joe. "If I hadn't kept 'er brake on, we'd been back 'ard."
THE FINEST STAMPS YOU EVER SAW NOW READY on the NEW STANLEY GIBBONS APPROVAL SHEETS

Definitely the best in existence—containing only brilliant stamps in wonderful condition and great variety. NEW sheets are now ready for all British Empire territories from Antigua to Malta. You must not miss seeing them, so write to-day for a sheet of the countries that interest you.

STANLEY GIBBONS LTD
DEPT. S.15, 391 STRAND, W.C.2
Big Lists Free on Request!

THE 'SHIP' PACKET

This marvelous packet is offered under cost as an advertisement. 48 different stamps each with a ship on it. A regular armada. GABON, a rare FOOCHOW (War Canoe), a wonderful Postage of caravels from DENMARK (complete set), ITALY (Naval Academy), NEW CALEDONIA, IVORY COAST, SAMOA (fine), a fleet of 10 CHINESE junks usually sold at 5d., MANCHURIA, BERMUDA, SOUTH WEST AFRICA, a set of S. AFRICA, CRETE, CUBA, etc., Price 4d.; posting 1d. (abroad 3d. extra). Purchasers of this packet asking for approvals receive FREE set of 4 SPAIN (Columbus, each with his ship on it). Money back if not satisfied. Senders of addresses of stamp collectors receive FREE set of 4 ICHANG, 100 BRITISH COLONIALS 1/-, 20 AIRPORT 6d., 6 TRIANGULAR 6d.

H. C. WATKINS (M. Dept.), Granville Road, BARNET

100 DIFFERENT BRITISH COLONIALS

This wonderful offer of the World's most popular stamps, from most of the colonies of our Empire, includes pictorials, commemoratives, high values, Bird, ship and animal stamps, out-of-the-way stamps. Long sets, many new issues, etc. ABSOLUTELY FREE TO GENUINE APPROVAL APPLICANTS WHO SEND 2d. FOR POSTAGE. J. BURTON, 82, Dinas Lane, Roby, Nr. Liverpool.

JUST OUT!!

Our New Price List of Sets and Packets for 1935

You will be surprised at the immense variety of interesting features to be found in this comprehensive publication. Thousands of sets including all the latest pictorials, hundreds of bargains in packets, in fact something for everyone. Why not send for a copy? It is free for the asking.

WHITFIELD KING & CO., Ipswich, Suffolk

Established 1869

ALL BRITISH COLONIAL APPROVALS

A fine British Colonial pictorial set of GAMBIA or DOMINICA sent FREE to all Collectors sending for my ALL BRITISH COLONIAL APPROVALS. (Both sets to those enclosing 1d. stamp.) Many scarce stamps at bargain prices. Satisfaction guaranteed to all Collectors. (No stamps sent abroad.) Also Foreign Pictorial selections to those interested.

C. H. SHAW (Dept. M.), 95, CHRISTCHURCH AVENUE, KENTON, HARRROW.

NEW ISSUES FREE EACH MONTH

KEEP UP-TO-DATE THIS LATEST WAY!

Let the postman bring you free every month & of the very latest stamps issued! REMEMBER—The New issues of to-day are CURIOSITIES of to-morrow, but up till now it has been impossible for collectors to keep right up-to-date without joint subscriptions. All this is changed by the approval's most important feature—New Issues are FREE TO YOU EACH MONTH just for the asking. SEND NO MONEY—Just fill in the application form (or plain paper) requesting gifts and approvals.

VICTOR BANCROFT, MATLOCK, ENGLAND
CATALOGUE TERMS EXPLAINED

LAST month we discussed the problems confronting the collector in re-arranging his collection in a new album, and suggested several general points that should be observed in such a process. The most important of those points was to give the stamps plenty of room. It is not less important to obtain a catalogue to use as a plan in arranging the new layout of the stamps and compiling the brief descriptive matter that is to accompany the stamps.

Before any plan can be used with complete success, it is essential that the terms it uses must be understood. In this article, therefore, we propose to explain briefly some of the more puzzling of the terms in common use in stamp catalogues. Considerations of space compel us to omit many elementary terms such as perforations, roulettes, watermarks, shades, etc., but these have been explained in recent issues of the "M.M.S.," and we may safely assume that they are well understood.

In these days of air mail services, however, some provision must be made for "entries." The keen aerophilatelist, as the air post collector is now dubbed, takes the view that "the cover's the thing," and the modern general collector would be well advised to make special provision for housing "covers" and "entries," as completed used envelopes are known. The postmark, as well as the stamp, tells a story, while in the case of air mail covers—those from first flights particularly—the story is often amplified by a "cachet," usually a personal or official emblem, and brief details of the flight, impressed on the cover.

The "cachet" is, indeed, a certificate that the cover has been carried upon a particular flight. In collecting air mail covers, readers should not overlook the importance of the "backstamp" as evidence that the cover has actually been flown. Many countries permit the use of air mail stamps on ordinary mail, and the "backstamp," a postmark applied to the back of the cover by the receiving office, in conjunction with the postmark or "cancellation" of the forwarding office, provides evidence of the time taken in transit. Not all genuine air mail covers are backstamped, unfortunately.

While touching on the subject of covers and postmarks, it will be well to refer also to "meter frank," a system of prepaying postal charges that is gaining tremendous popularity with business houses throughout the world. Briefly explained, a "meter frank" is an impression, serving the purpose of a postage stamp, printed on the envelope by a machine that has previously been set by the postal authorities to print frank up to an agreed amount, paid in advance by the user of the machine. When this sum is exhausted the machine automatically locks itself. The impression embodies the registered number of the impressing machine, and in most cases it also includes a neat advertising device, featuring the name of the user and the brand name of his products, or possibly an advertising slogan.

This form of postmark advertising must not be confused with the "slogan postmark" that is commonly added to the ordinary dated cancellation to-day to focus attention on some matter of national importance. When we get postmarked exhortations to "Post Early for Christmas," or "Save Time by Telephone," a collection of such slogans, in common to which the other "cover" features we have mentioned, is of interest as to justify reservation to a special album.

There are several forms of adhesive pre-paid stamps, notably the U.S.A. "pre-cancels," that should go into the main album. With a view to reducing the work of postmarking envelopes after posting, U.S.A. post offices supply business houses with coils of stamps already impressed with cancellation bars and the name of the issuing office. Recently a young reader sent such a stamp to us and asked: "How is this done?" His reasoning was quite easy to follow and by no means illogical, but the two things are poles apart. "Re-prints" are reproductions of stamps produced from the original plates at some period after the issue of the original stamps has ceased. At one time the issue of "re-prints" for the use of stamp collectors was quite a common practice, and many such issues prepared officially have a definite standing and quite considerable value. Others, of an unofficial nature, are worthless, but readers need have no fear of being caught by such rubbish if they will make a point of buying their stamps only from established stamp dealers. Most countries do not permit "re-printing" to-day.

To some degree the "re-print" might be considered a specimen stamp, but there is a definite class of stamps known as "specimens," and these bear the word overprinted across their face. They are issued for official purposes such as distribution by the Bureau of the Universal Postal Union, for inclusion in the official collections of other countries. By their nature "specimen" stamps are rare, but, except in a few isolated cases, their value is much below that of standard issues.

There is another variety of stamp known as "cancelled to order," that comes within the group of stamps cancelled before issue. Many Governments sell off their surplus stocks of stamps after an issue has been withdrawn from circulation, and when the sale is at less than face value a cancellation is applied to prevent the postal use of the stamps. Such stamps usually can be identified by their extremely clean condition and by the presence of gum on their backs.
COSTA RICA TRIANGLE!! ROUMANIA BOY KINGS!! AIRS AND PICTORIALS!!
Total of 3 Stamps for 6d.
Including 3 unused set of 10 stamps from Costa Rica: Triangles, 1932 Philatelic Exhibition issue, complete set of 9 Roumania, 1928-30 Schoolboy King pictorials showing postage rate, complete and unused set of 5 Russia, 1919 Northern Army issue. Brazil, 1933 Airport Fuel stamp, complete set of 4 Tobago pictorials, Czechoslovakia pictorials, Italy, Fascist and Holy Year commemorative stamp; 1932 issue stamps. Other stamps include air mails, surcharged issues and pictorials. Price 6d. (Postage 1d. extra).
Money orders or postal orders only. All stamps are in very fine condition. Hundreds of unused and illustrated engravings have been received. Numerous others are available at low prices.
W. BENNETT
53, Marlborough Road, London, E 8.

The MYSTIC PACKET
1,000 UNUSUAL 1/3
UNSORTED, Stamps on paper, etc., just as received from all trained collectors, Shippers, Missions, etc., etc., and, unerrated and unpriced. Chance of a find in every lot. Send by post to-day for your treasure hunt-to-morrow. 3 for 3/6, 6 for 6/6.
Send 1/6 abd. /1/6 per pkt.
FREE! 10 Churns of Wax, 10 Libans, etc., to Approver applicants. Many other gifts. Send postage only. Overseas 3d.
ASTLEY & CO., 4, LOW HILL, WOLVERHAMPTON.

"Top-Notch"
"Once again your stamps are "Top-Notch"!" Thus writes one of our regular customers. If you want a good idea of what we mean by a "Top-Notch Packet," send for a specimen. We will send a fine packet of Canada and Newfoundland, including commemoratives and pictorials.
SHERRY STAMP CO., 19, Sandringham Avenue, London, S.W.20.

"DIAMONDS"
MANY RARE STAMPS have been found by purchasers of the "DIAMONDS" Packet! Approximately 1,000 UNSORTED STAMPS from 1p. 1/6. 3 p.ts. 3/9. 5 p.ts. 6/-. All post free. (Abroad 2d. per pkt. extra.)
O. L. JERVIS
(Dept. K.), 68, TURNPIKE LANE, LONDON, E. N., ENGLAND.

"1,000 PACKET" D.
A Wonderful Offer for
Postage 2d. ex. Abroad 6d. ex.

FAR EASTERN PACKETS!!
This huge Gift packet contains 507 Unsorted Foreign and Colonial Stamps, many scarce from Japan, China, Ceylon, Egypt, Malay (Tiger), Siam, Portuguese, Brazilian, U.S.A., etc., etc,
Stamp Gossip
and Notes on New Issues

An Argentine Commemorative

To commemorate the Eucharist Congress held in October last at Buenos Aires, the Argentine issued two very fine new stamp designs, one of which we illustrate here. This design, used for the 10c. value, shows the famous statue known as "Christ of the Andes", which stands in the Usupalata Pass on the Argentine-Chilean frontier as a symbol of peace between these two countries. It was erected to commemorate the settlement by the late King Edward VII of the long-standing boundary dispute between the two countries. The second stamp of the series, a 15c. value, shows the magnificent cathedral at Buenos Aires, where lies the body of Argentina's national hero, San Martin.

Grenada's Pictorial Issue

The change-over of the British Colonial stamp designs from the simple King's Head type to pictorial designs, is proceeding apace, and this month we are able to show a specimen from Grenada's new issue, a worthy companion set to the recent issues from St. Helena, Ascension and British Guiana. The series of 10 stamps uses only four designs, from which we illustrate the 1d. value, a composite picture showing the badge of the Colony and the King's Head.

The other three designs show respectively the Grand Anse Beach; the Grand Etang, a lake about 7 miles from St. Georges, the capital of the Island; and a view of St. Georges itself. The King's portrait in three-quarter profile appears in the top right-hand corner of each of these designs. Thus tradition is satisfied without detracting from the beauty of the designs.

A successful rocket post experiment was carried out on 30th October in the neighbourhood of Trieste, when a distance of 4,000 metres (about 3 miles) was covered. The letters enclosed in the rocket bag were franked with two triangular and imperforate stamps, 5L and 7L.70, both showing an eagle hovering over a globe and a mail rocket in flight. The stamps were inscribed "Trieste, Ottobre 1934, esperimenti di posta per razzo espress."
Solutions to January Puzzles

No. 1. The "Comet" was the first aeroplane in the square. (To solve the puzzle properly it is necessary to start with this in the bottom right-hand corner and move diagonally upwards.) The second aeroplane was the "Albatross." To get the first letter of this it was necessary to go down from the T in "Comet." The other aeroplanes were in the following order: Courier, Hercules, Scylla, Hawk, Meg, Gull, Fury, Monopair, Dragon, Swift, Bulldog, Scipio, Videlbert.

No. 2. The verse was from one of Tennyson’s poems. With the vowels filled in it reads:

The spider's web.

Any snowy summits old in story.

The long light shades across the lido,

And the blue sea is green and blue.

Blow bugle, blow, set the wild echoes flying,

Blow, bugle, bugle, echoes, dying, dying.

No. 3. The three objects illustrated were Swine, Berry and Stone. It must be taken from each word being in italics. When re-arranged these six letters make the name Singel.

No. 4. The names were: 1. Bolton; 2. Winchester; 3. Newcastle; 4. Shrewsbury; 5. Lancaster.

No. 5. "They also serve who only stand and wait," from Milton’s sonnet “On His Blindness,” was the line of verse hidden in this sentence.

No. 6. The proverb was: “A rolling stone gathers no moss.”

No. 7. The magic square was:

\[\begin{array}{ccc}
E & C & O \\
O & H & T \\
C & T & O
\end{array} \]

No. 8. "Noon" is the word that reads the same backwards, forwards and upside-down.

The aeroplane was the “Monospar.”

No. 10. The puzzle of this puzzle is to let x represent the age of Henry when John was three times as old as he was. John was then 3x years old and when Henry was 3x years old, John was then 9x years old. Since John was then 9x years old, John’s age was 9x years. Then John’s age at the age he was 4x years old and as John is always 2x years older than Henry, at this time Henry’s age was 4x - 2x = 2x years. As John is twice as old as this his age is 5x years more than Henry’s age at 3x years.

In the equation 5x - 3x = 4- x = 3 and therefore John is 27 1/2 years old and Henry 17 1/2 years old.

No. 11. The numbers 1 to 7 should be arranged in the following order: 1 3 3 4 6 7 100

Chemistry—(Continued from page 101)

them is a semi-circular steel flume, 10 ft. in diameter, along which the incoming sea water flows. Each unit consists of a blowing-out tower, in which the brine is heated to a set free, and then it is taken up by the soda ash lagoon.

The sea water is supplied by means of pumps to the tops of the blowing-out towers, and on the way the proportions of the various gases and water are adjusted to liberate the bromine into solutions through special valves. These towers are of brick, with concrete roofs, and contain distributor boxes and pipes that divide the liquid into about 3,000 tiny streams that trickle downward through chambers filled with wood packing. There are many strong currents that blow the bromine out of them before they reach the bottom of the tower, and make their way into the outlet leading to the Cape Fear River.

The process of the chemical changes taking place is carefully followed by means of automatic meters, and the valves, through which the sulphuric acid and the chlorine are adjusted by hand to ensure the best results.

The acid is added to the mixture already introduced, and before use it is diluted to a strength of about 10 per cent. in rubberlined tanks 18 ft. in diameter and 10 ft. in height. The chlorine is obtained from cylinders, each of which holds a ton of this element in liquid form, and reaches the sea water through a very exceptionally strong, jointed, iron pipe. It is probable that the operation of heating these chemicals also will be made automatic.

The air laden with bromine vapour from the blowing-out towers is drawn through the absorption towers by means of fans, and there meets a solution of soda ash that extracts the bromine. These absorption towers are built on concrete arches which are the tanks in which the brine is heated, and each tank is divided into nine chambers, down which the solution falls in the form of spray. The counter-current principle is followed, the air current rises as the towers meeting a solution that is almost saturated with bromine, and fresh soda ash is added to the sea water to continue the process from the air leaving the towers.

The process is carried on without interruption, a stream of sea water flowing steadily through the blowing-out tower at a measured rate and bromine being driven out of it continuously, to be taken up by the soda lagoon as this circulates through the absorbers. A mixture of sodium bromide and sodium chloride is the result, and the bromine is easily recovered directly from the brine by mixing it with cold water and blowing steam through it. The bromine vapour driven out in this manner is condensed into liquid form by cooling, except as it is required for distillation.

The purpose of the plant is the production of a compound known as bromoform, which is the end-product of the plant, the only process for producing this oil being in engines in which this fuel is used. It is formed when bromine is brought into contact with a gas called ethylene, which is produced in the plant by the process of chlorination of an alcohol, and is produced in the laboratory by chlorination of ethylene with an alkyl halide upon the same liquid. The effect is almost startling, for the transformation of liquid bromine into a heavy colourless liquid that has an attractive ethereal smell.

The manufacture of bromine from such unpromising raw material as sea water is a wonderful achievement. The process seems to the writer to be a really astounding result, however, for a small globule of gold and silver has recently been extracted from the residues left after the separation of bromine. The recovery of these metals from the sea has been always one of the dreams of the chemist, but so far this has been unfulfilled because they are present in such minute proportion that enormous expense would be incurred in recovering them alone. The prospects of success seem brighter today than ever before and it is possible that bromine can be extracted at the same time, and it does not seem unreasonable to expect the chemist of the next decade to obtain gold and silver from sea water.

We are indebted to the Dow Chemical Company, Midland, Michigan, for the valuable information in regard to the process described in this article.

New Year Bargains

The demand for New Year Bargains, featured on page 6 of the January Magazine, has been so great that stocks of most of the items are exhausted at the time of going to press, and we are not able to supply the undermentioned, and will continue to execute orders until stocks are exhausted.

These goods can only be obtained direct from Meccano Limited, Binns Road, Liverpool. They are not obtainable through Meccano dealers.

MECCANO AEROPLENE OUTFITS O.S. No. 1. Aeroplane Outfit O.S. 4 5/6 9 1/2 No. 2. Aeroplane Outfit O.S. 5 1/6 8 1/2

HORNY ROLLING STOCK AND ACCESSORIES Wagon, French type O.S. 1 1/4 2 1/2 Covered Wagon O.S. 1 1/4 2 1/2 Brake Van, French type O.S. 1 1/4 2 1/2 Hopper Wagon O.S. 1 1/2 3 1/2 coaches O.S. 1 1/2 3 1/2 No. 2. 2 Coach Wagon O.S. 1 7/8 3 3/4 No. 3. 3 Coach Wagon O.S. 2 1/4 4 1/4 No. 4. 4 Coach Wagon O.S. 2 1/2 4 1/2 No. 5. 5 Coach Wagon O.S. 2 7/8 5 1/4 No. 6. 6 Coach Wagon O.S. 3 1/4 5 1/4 No. 7. 7 Coach Wagon O.S. 3 3/4 6 1/2 No. 8. 8 Coach Wagon O.S. 4 1/4 6 1/4 No. 9. 9 Coach Wagon O.S. 4 7/8 6 1/2 No. 10. 10 Coach Wagon O.S. 5 1/2 7 1/2

NOTE: The buffer height of the Locomotives and Rolling Stock listed above is 1-1/16 in. and the buffers will be executed in the railway lettering that is available.

STORAGE BOXES O.S. No. 5. Cabinet O.S. (Oak finish) 21 1/2 30 1/2 No. 5a. Cabinet O.S. (Enamelled in blue) 20 1/2 30 1/2 Special Storage Box O.S. (Blue finish) 16 1/2 24 1/2

Meccano Ltd., Binns Rd., Liverpool 13

DON’T BE BULLIED

Learn to fear no man. The BEST self-defense ever invented, namely, JUJITSU, is easy to learn. Ideal Summer Thểnial and particular, or P.O. 1/- for FIRST PART of your course. You will be more than delighted.

Dept. M.G., Blechheim House, Edsfule, Feltham, Middx.

Ball Race Turn Table

Can you lift 56 lbs. with one hand?

The G.M. Ball Race Turn Table will help you to turn this wheel.

For your Crane or Swing Bridge you can lift heavy weights.

POST FREE 1/10 each

From your local Toy Shop

G. M. PATENTS CO.,
26, New Buildings, Price Street, Birmingham 4.
HORNYBY ROLLING STOCK

Hornby Rolling Stock includes almost every type in use on the big railways, and a selection of the splendid range available is illustrated on this page. The various items are modelled on realistic lines, strongly built and beautifully finished.

Ask your dealer to show you the full range of Hornby Rolling Stock.

COACH, RIVIERA "BLUE"
This is a beautiful model, substantially built and well finished. Suitable for 24t. radius rails only. Price 12/6

COACH, CONTINENTAL "MITROPA" No. 3
Beautifully finished in red with white roof, and lettered "Mitropa" in gold. Price 12/6

"BREAKDOWN VAN AND CRANE"
Beautifully coloured in green and blue, with opening doors. Suitable for 24t. radius rails only. Price 5/11

SNOw PLOUGH
With revolving plough. Price 3/9

SIDE TIPPING WAGON
Letered "Robert Hudson Ltd." Price 2/6

TANK CAR, AMERICAN TYPE
Model of the type of oil tank car used in America. Price 1/9

"WAGON, HORNY No. 0"
Price 1/6

"WAGON, HORNY No. 1 (illustrated)"
Price 1/9

"LUGGAGE VAN No. 2"
Fitted with double doors. Suitable for 24t. radius rails only. Price 4/6

"CATTLE TRUCK No. 2"
Fitted with double doors. Suitable for 24t. radius rails only. Price 4/6

"LUMBER WAGON No. 1"
Fitted with bolsters and slats. Price 1/6

"BARREL WAGON"
This is a model of a type of wagon used in France and other European countries. Price 2/6

"BITUMEN TANK WAGON "COLA""
Price 3/6

"WAGON (French Type)"
Price 3/3

"WINE WAGON DOUBLE BARREL"
This model represents the French double-barrel type of Wine Wagon. Beautiful finish. Price 4/6

"WINE WAGON SINGLE BARREL"
Price 3/6

MECCANO LTD. — BINSNS ROAD — LIVERPOOL 13
Boys! Explore the Mysteries of Chemistry

Exploring the mysteries of chemistry with Meccano Kemex Chemical Outfits is one of the most fascinating of all hobbies, and there is no limit to the fun that experiments with the contents of these Outfits will provide. With them a boy can grow crystals; make invisible inks and a chemical garden; smelt metals from their compounds; write with electricity; dye wool, cotton and silk and bleach fabrics that are already dyed; prepare gases; and perform hosts of other attractive chemical experiments.

The Outfits contain everything that is necessary, and full directions for making hundreds of experiments are given in a splendidly illustrated Manual that is included in each Outfit. Real photographs show how the apparatus required is fitted up, and the manner in which each experiment is made.

Kemex Outfits for Chemical Fun!

PRICES AND PARTICULARS OF MECCANO KEMEX OUTFITS

No. 0 MECCANO KEMEX OUTFIT
75 Experiments
This Outfit includes a supply of specially selected chemicals, packed in airtight containers, together with a length of Magnesium Ribbon, sufficient to perform 75 attractive experiments. The apparatus includes Test Tubes, Test Tube Brush, Delivery Tubes and Corks, and a highly efficient Spirit Lamp.
Price 5/-

No. 1 MECCANO KEMEX OUTFIT
130 Experiments
This Outfit includes the whole of the contents of the No. O Outfit, together with further chemicals that increase the number of experiments that can be performed to 130. The additional apparatus includes a Test Tube Holder, Glass Stirring Rod, Funnel and Filter Papers.
Price 7/6

No. 2L MECCANO KEMEX OUTFIT
250 Experiments
This Outfit includes the whole of the contents of the No. 1 Outfit, and further chemicals that increase the range of experiments up to 250. The additional apparatus includes a porcelain Evaporating Dish, Special Test Tubes to withstand high temperatures, a handsome Test Tube Stand, and an Evaporating Stand including a Ring, with Wire Gauze.
Price 15/-

No. 3L MECCANO KEMEX OUTFIT
350-400 Experiments
This is a splendid complete Outfit that provides a boy with all he requires to carry out between 350 and 400 experiments, and thus enables him to acquire a sound knowledge of the fascinating principles of chemistry. The Outfit includes the contents of the No. 2 Outfit, with additional chemicals and apparatus. The latter includes a gas-generating apparatus, consisting of a large Wide-necked Flask with Thistle Funnel and Delivery Tubes, and a Blowpipe and a Charcoal Block. These items open up a series of experiments of outstanding interest.
Price 25/-

No. 2B MECCANO KEMEX OUTFIT
This is exactly the same as the No. 2L Meccano Kemex Outfit, except that a highly efficient Bunsen Burner, with the necessary length of rubber tubing, is included in place of the Spirit Lamp.
Price 15/-

No. 3B MECCANO KEMEX OUTFIT
This is exactly the same as the No. 3L Meccano Kemex Outfit, except that a highly efficient Bunsen Burner, with the necessary length of rubber tubing, is included in place of the Spirit Lamp.
Price 25/-

The apparatus and chemicals included in Kemex Outfits can be obtained separately. Ask your dealer for the leaflet giving a list of Kemex parts and their prices, or write for a copy to the address given below.

MECCANO KEMEX CHEMICAL OUTFITS
Manufactured by MECCANO LTD., Binns Road, LIVERPOOL 13
THE WORLD'S STEEL HIGHWAYS IN STORY AND PICTURE

IMPORTANT NEW PART WORK

RAILWAY WONDERS OF THE WORLD

The Adventurous Story of the Railways from Stephenson's "Rocket" to the modern Streamlined Express, written by experts and illustrated by the most fascinating gallery of railway photographs and pictures ever brought together.

This new work is the most important contribution to railway lore in the present century. It presents, for the first time, a true and comprehensive picture of the inspiration, brave-hearted devotion, heroism and enterprise which were given unsparsingly and are still devoted to the development of the railroads of the world.

It pictures, with all the enthralling interest of a modern adventure story, all that the layman or student may want to know about every railway of importance in every quarter of the globe—and some that are not so important but have unusual features to commend them. It deals not only with locomotives and railroads, but also with all the scientific marvels of invention that bridged almost insuperable difficulties and made possible such triumphs of engineering skill as the Forth Bridge, the Alpine Railways of Switzerland, London's Underground and the wonder railways of Australia and the East. Whatever is of interest in any phase of railway construction and railway travel will be dealt with faithfully and authoritatively in this unique publication.

SUPERBLY ILLUSTRATED

A feature of RAILWAY WONDERS OF THE WORLD will be the unique collection of photographs, many of which have been obtained after almost incredible research and expense. Each part will contain a large number of these interesting pictures in addition to many diagrams, specially prepared by experts, showing the construction and working of railway machinery from signals to locomotives.

PART 1 NOW ON SALE

7d

The work, which is to be completed in about 40 weekly parts, is beautifully printed on art paper and will contain a large number of PLATES IN FULL COLOUR in addition to special supplements produced by the latest methods of photogravure printing.

No one who is interested in railways can afford to miss this wonderful work. It is new, it is authoritative, it is the best railway publication yet issued in this country—and the best value.

At all Newsagents and Bookstalls
MECCANO PARTS & ACCESSORIES

REAL ENGINEERING PARTS IN MINIATURE

Meccano parts, many of which are here illustrated, combine to form a complete miniature engineering system with which practically any movement known in mechanics may be correctly reproduced.

New parts are always being introduced in order to keep Meccano model-building in line with the most modern engineering requirements. The greatest care is taken in the designing of these parts to ensure that they function exactly as their counterparts in actual engineering practice.

MECCANO LTD., Binns Road
LIVERPOOL 13

PRICES OF PARTS ILLUSTRATED

No. 3. Perforated Strips, 3½... 1 doz. 0 4
9b. Angle Girders, 3½... 1 doz. 0 8
10. Flat brackets... 1 doz. 0 2
11. Double Brackets... 1 doz. 0 6
12a. Angle Brackets, 1½ x 1½... 1 doz. 0 4
19a. Wheels, 3½ diam., with set screws... each 0 6
20. Flanged Wheels, 1½ diam. ... 1 doz. 0 5
20b. ... 1 doz. 0 3
19c. 6 in. dia. with centre boss and set screw... each 1 9
20a. 2 in. ... 1 doz. 0 4
21. 1½ in. ... 1 doz. 0 4
22. ... 1 doz. 0 3
23a. 1½ in. dia. with centre boss and grub screw... each 0 3
22a. 1½ in. dia. without centre boss and grub screw ... 1 doz. 0 2
23. 1½ in. ... 1 doz. 0 6
24. Bush Wheels ... 1 doz. 0 4
26. Pinion Wheels, 1½ dia., 3 face ... 1 doz. 0 4
26a. ... 1 doz. 0 6
26b. ... 1 doz. 0 6
27. Gear Wheels, 1½, 38 teeth each ... 1 doz. 0 10
27a. 57 ... 1 doz. 0 6
29. Contra-Pressure Wheels, 1½ diam. each ... 1 doz. 0 6
29a. ... 1 doz. 0 6
30. Bevel Gears, 1½, 26 teeth each ... 0 7
33a. ... 1 doz. 0 6
33b. ... 1 doz. 0 6
34a. 1½, 46 ... 1 doz. 1 6
40. Bevel and Split... can only be used together
31. Gear Wheels, 1½, 38 teeth each ... 1 doz. 0 10
32. Worms ... 1 doz. 0 4
44. Cranked Bent Strips ... 1 doz. 0 1
45. Double ... 1 doz. 0 1
46. Angle Strips, 2½ x 1½... 1 doz. 0 6
55. Perforated Strips, slotted, 3½ long ... 1 doz. 1 6
61. Windmill Sails ... 4 for 0 6
77. Triangular Plates, 1½... each 0 1

147 & 154

PRICES OF PARTS ILLUSTRATED (Cont.)

No. 90. 2½" Curved Strip, 2½" radius ... each 0 1
90a. 2½" Curved Strip, cracked, 1½" radius, 4 to circle ... 0 1
95b. Sprocket Wheels, 36 teeth, 3½ diam. ... 0 6
96. Sprocket Wheels, 18 teeth, 1½ diam. ... 0 3
99. Braced Girders, 1½, 1½ diam. ... 1 doz. 2 6
102. Single Bent Strips ... each 0 1
103d. Flat Girders, 3½, long ... 1 doz. 0 7
103b. Flat Girders, 3½, long ... 1 doz. 0 7
108. Archtrusses ... 1 doz. 1 6
110. Rack Strips, 2½... each 0 2
113. Girder Frames ... each 0 3
118. Hub Discs, 2½... 1 3
119. Channel Segments (8 to circle, 1½ diam.)... each 0 4
123. Cone Pulley ... 1 3
124. Reversed Angle Brackets, 1½... 1 doz. 0 4
125. Corner Brackets, 1½... 1 doz. 0 1
133a. ... 1 doz. 0 1
137. Wheel Flanges ... 1 3
139. Flanged Brackets (right hand)... 2 doz. 0 2
143. Circular Girders, 5½ diam. ... 1 0
145. Circular Strips, 7½ diam. ... 1 5
146. Gear Teeth over all... each 0 9
147. Paws, with 3½ bolt nuts ... 1 doz. 0 3
148. Ratchet Wheels ... 1 doz. 0 6
154a. Corner Angle Bracket, 3½... right hand ... 1 doz. 0 6
154b. Angle Bracket, 3½... left hand ... 1 doz. 0 6
159. Channel Bearings, 1½ x 1½... each 0 2
161. Girder Brackets, 2½, 2½ x 1½... each 2 6
167. Geared Roller Bearings ... each 10 0
168. Ball Bearings, 4½ diam. ... 1 doz. 0 6
170. Eccentrics, 1½ throw ... each 0 9
180. Toothed Geared Ring, 3½ diam. (95 external teeth)... 2 0
Choose the best bicycle in the shop

RALEIGH
THE ALL-STEEL BICYCLE

Choosing a bike? Well, have the best while you're about it—have a Raleigh. With its light, strong frame, its perfect balance, its easy-running and its For Ever Guarantee, a Raleigh is well worth the few extra shillings. It's a bicycle you'll always be proud to own, and an investment your parents will be glad to make. Send for "The Book of the Raleigh" to-day—then talk it over with your people.

- From £4.7.6 Cash or 12 monthly payments of 8/9. Fitted with Dunlop Tyres, Brooks' Saddle and the best of everything. Specify the Sturmey-Archer Three-Speed Gear, 20/- extra. Send for free copy of "The Book of the Raleigh" and name and address of nearest dealer.

THE RALEIGH CYCLE CO. LTD., NOTTINGHAM
(Depts and Agents everywhere)

Lott's Chemistry and Electricity Sets
Obtainable at all leading Toy Dealers and Stores

WRITE FOR FREE ILLUSTRATED LISTS OF ALL LOTT'S PRODUCTS
Dept. M.M., LOTT'S BRICKS LTD., WATFORD, HERTS.
In 1884 (20 years before the first aeroplane) Seccotine was discovered. Flying meant ballooning in those days. Yet though the world has since seen immense development in Air travel, Seccotine is still the standby for making and mending. It has been used on record-breaking long-distance planes, Schneider Trophy Seaplanes, by the Admiralty and leading factories and workshops everywhere, on jobs where failure to stick might mean disaster. The WORLD’S PROVED STRONGEST ADHESIVE.

Your models and broken articles will stick PERMANENTLY if you use SECCOTINE.

Obtainable from all good Stationers, Chemists, Ironmongers, etc., 4d., 6d. and 9d. a tube.

SECCOTINE

POST THIS COUPON for FREE BOOKLET

To: Dept. M, McCa’w, Stevenson & Orr Ltd., Belfast.

Please send me a copy of your Free Booklet.

Name ____________________________

Address __________________________

B.S.A. Air Rifles

Prices from 45' - or 4'3 a month

B.S.A. Guns Ltd., 92, Armoury Rd., B’ham, 11

Send me the B.S.A. Air Rifle Leaflet.

Name: ____________________________

Address: __________________________

WONDERFUL BARGAINS IN GENT’S POCKET WATCHES

A Silverwhite Double Albert presented FREE with every watch.

Post free on three days’ approval.

Money returned if not satisfactory.

Gent.'s Nickelled lever with patent unbreakable glass 2/9

Gent.’s superior 3-piece Nickelled lever, solid pinions, reliable timekeeper, suitable for hard wear 5/6

Gent.’s highly recommended extra special Chromium case lever, solid pinions, superior finish 7/6

THE CLEVEREST WATCH ON THE MARKET which cannot be beaten for price or quality, highly recommended for those wanting a gent.'s first-class Chrome model lever with jewelled movement, thoroughly examined and guaranteed 15/6

Wrist watches from 5/6, price list of many others post free.

BOYS! Here is a REAL
Super “Adana” High Speed Automatic Self-Inking PRINTING MACHINE!

WILL PRINT
1,000 COPIES PER HOUR

BOYS! Here is something you’ve often wished for—a Real Printing Machine! Not a toy or a model but an Automatic Self-Inking Adana Machine which uses real Printer’s Metal Type and produces work just like that done by Professional Printers.

There’s not a more exciting or interesting hobby than printing on my Wonderful Invention. You can print your own Noteheadings and Visiting Cards—Entertainment Programmes—Party Invitation Cards and a 101 other interesting things. It’s so fascinating that you’ll want to spend every spare moment at it!

WHAT A THRILLING HOBBY

Get Dad to get you one Right Away

Here are some of the things my Machine will print:
- Fixture Cards
- Concert Programmes
- Dance Invitation Cards
- Noteheadings
- Visiting Cards
- Menus
- Tradesmen’s Bills
- Club Notices
- Etc., Etc.

A GREAT OPPORTUNITY
NO BOY SHOULD POSSIBLY MISS!

No more “make-shift” rubber stamps or duplicators—here’s the real thing and so low in price that you MUST NOT miss the chance of getting it! Let me tell you all about my Wonderful Machine and what it will do. Send the coupon alongside TODAY and I will send you FREE actual samples of work produced and explain how I will let you have it on Special Terms. No boy should miss this Splendid Bargain. It is a Real Commercial Machine, for many men make a lot of Money by printing on it for Local Tradesmen, etc. Find out all about it NOW. Send the Coupon alongside at once to Mr. D. A. ADANA (Dept. M.C.14), 17, Church St., Twickenham, Middlesex.

COUPON

To Mr. D. A. ADANA (Dept. M.C.14), 17, Church St., Twickenham, Middlesex.

Dear Sir,

Please send me at once and FREE, full details of your Wonderful Adana Printing Machine—together with samples of ACTUAL Work produced, and Easy Payment Terms.

Cut out this Coupon and Post at once with your full name and address attached.
A HANDBOOK OF HOBBIES for pleasure and profit

Here are a dozen different pastimes for any fellow who likes to use his hands. Cut out in wood—to use or play with. Make your own models or save money by making presents. There are 268 pages packed with interest and free patterns for a Toy Fort, two Colour Pictures, a model Seaplane, and a model Desk Telephone besides details of over 500 other things to make.

ONLY 6d.

FRETWORK
TOY MAKING
JIGSAWS
STATUETTES
DOLL'S HOUSES
FURNITURE
MODELS
CALENDARS
PUZZLES
TRAYS, ETC.

Obtainable, price 6d., from any newsagent, ironmonger or Hobbies Branch. Or sent post free if you send 9d. to Hobbies Ltd., Dept. 96, Dereham, Norfolk.

HOBBIES 1935 HANDBOOK

MECCANO STORAGE BOXES

Almost every Meccano boy purchases additional Meccano parts from time to time, but there is sometimes difficulty in finding suitable accommodation for them. We supply strongly made boxes that have been specially designed for the purpose, enabling extra parts to be stored neatly and methodically so that they are always easily accessible. There are three different sizes, each of which is illustrated and described here.

No. 1 STORAGE BOX
This Storage Box is attractively finished in colour, and is fitted with partitions. Two special snap fasteners are used to secure the lid instead of the lock and key shown in the illustration.
Dimensions: Length 15½ ins. Width 8½ ins. Depth 2½ ins. Price 8/-

No. 2 STORAGE BOX
No. 2 Storage Box is tastefully finished in red. The partitioned tray with which it is fitted enables a large quantity of parts to be accommodated.
NOTE: With slight modifications this box can be made to accommodate the contents of the No. 3 Meccano Kelmex Outfit. We are prepared to undertake the necessary alterations at an extra charge of 2/6.

No. 3 STORAGE BOX
No. 3 Storage Box is a perfect receptacle for Meccano parts, strongly made and attractively finished in red. It is fitted with two brass handles, and the lid is secured by means of two snap fasteners. Two partitioned trays are included, as shown in the illustration.
Dimensions: Length 20 ins. Width 14 ins. Depth 5½ ins. Price 20/-

MANUFACTURED BY
MECCANO LIMITED, BINNS ROAD, LIVERPOOL 13
And Now Another

Aeromodel Scale Model Construction Sets 1/24 Actual Size

<table>
<thead>
<tr>
<th>Model</th>
<th>PRICE</th>
<th>Post Free Gt. Brit. do. Abroad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. De Havilland Gipsy Moth</td>
<td>3/-</td>
<td>3/4</td>
</tr>
<tr>
<td>2. Comper "Swift"</td>
<td>3/6</td>
<td>3/10</td>
</tr>
<tr>
<td>3. De Havilland Puss Moth</td>
<td>3/6</td>
<td>10</td>
</tr>
<tr>
<td>4. Schneider Seaplane</td>
<td>4/-</td>
<td>5</td>
</tr>
<tr>
<td>5. De Havilland "Dragon"</td>
<td>4/6</td>
<td>6</td>
</tr>
<tr>
<td>6. De Havilland "Fox Moth"</td>
<td>5/-</td>
<td>5</td>
</tr>
<tr>
<td>7. S.E.5a</td>
<td>5/-</td>
<td>5</td>
</tr>
<tr>
<td>8. Hawker Hart</td>
<td>5/-</td>
<td>5</td>
</tr>
</tbody>
</table>

Sold by Hamley's, 200, Regent Street, London, W.1. Also by Hobbies (C. Lucas), Houghton Street, Liverpool.

Fill in the coupon and post it to-day. A 4d. stamp is sufficient if the envelope is sealed.

Please send me free illustrated literature containing full details of all Aeromodel Sets.

Name: __
Address: __

Aeromodels Ltd., Hooton Road, Willaston, Wirral, Cheshire.

Trade enquiries are invited.

Build Your Own Model Aeroplanes and Ships

Invite the most experienced air pilot or sailor to examine Skybird or Shipseries parts in detail. There is not a single fault he can find with them, if you have followed the simple instructions we enclose with every set.

Skybird and Shipseries parts are not toys, but are accurate, engineer-made, true-to-scale and complete in all details. They are of wood, metal and celluloid, not cardboard. There is a complete range of parts, for both Aeroplanes and Ship models, for you to build. As a hobby, it is the most fascinating in the world.

Skybirds

There are thousands of enthusiasts who have joined the Skybird League or the Shipseries League. If you will fill in and send this coupon with 7d. in stamps, we will post you the latest copy of "The Skybird" Magazine, which gives you complete information about Skybird models and tells you all about the League.

Please send me the latest copy of "The Skybird," for which I enclose 7d. Also send address of nearest agent. (Write in block letters please.)

Name: _______________________________________
Address: ____________________________________

HORNBY RAILS, POINTS AND CROSSINGS

There is practically no limit to the number of rail formations that can be built with Hornby Rails, Points and Crossings. A supply of Rails is included in every Hornby Train Set, but the owner is certainly not getting the best out of his set if he is satisfied with merely running it round a simple oval track. The addition of extra Rails and Points and Crossings to his equipment leads a delightful realism to the game and greatly enhances the fun.

Rails for Electric Trains, Gauge 0, 1 1/4"

CURVED RAILS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA1</td>
<td>Curved rails 1-ft. radius</td>
<td>4/6</td>
</tr>
<tr>
<td>EA1</td>
<td>Curved half rails</td>
<td>3/6</td>
</tr>
<tr>
<td>EA1</td>
<td>Curved quarter rails</td>
<td>4/6</td>
</tr>
<tr>
<td>EA2</td>
<td>2-ft. Radius rails</td>
<td>4/6</td>
</tr>
<tr>
<td>EA2</td>
<td>Curved rails 1-ft. radius</td>
<td>4/6</td>
</tr>
<tr>
<td>EA2</td>
<td>Curved half rails</td>
<td>3/6</td>
</tr>
<tr>
<td>EA2</td>
<td>Curved quarter rails</td>
<td>4/6</td>
</tr>
<tr>
<td>EDC2</td>
<td>Curved rails, double track</td>
<td>½ doz. 9/7</td>
</tr>
</tbody>
</table>

STRAIGHT RAILS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB1</td>
<td>Straight rails 1-ft</td>
<td>4/6</td>
</tr>
<tr>
<td>EB1</td>
<td>Straight half rails</td>
<td>4/6</td>
</tr>
<tr>
<td>EB1</td>
<td>Straight quarter rails</td>
<td>4/6</td>
</tr>
<tr>
<td>EDS1</td>
<td>Straight rails, double track</td>
<td>½ doz. 8/6</td>
</tr>
</tbody>
</table>

POINTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR1</td>
<td>Right-hand points 1</td>
<td>per pair 5/9</td>
</tr>
<tr>
<td>EPL1</td>
<td>Left-hand points</td>
<td>per pair 5/9</td>
</tr>
<tr>
<td>EPR2</td>
<td>Right-hand points 2</td>
<td>per pair 6/6</td>
</tr>
<tr>
<td>EPL2</td>
<td>Left-hand points</td>
<td>per pair 6/6</td>
</tr>
</tbody>
</table>

Rails for Clockwork and Steam Trains, Gauge 0, 1 1/4"

CURVED RAILS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9</td>
<td>Curved rails 9-in. radius (for MO Trains)</td>
<td>per doz. 2/6</td>
</tr>
<tr>
<td>MB9</td>
<td>Curved brake rails 9-in. radius (for MO Trains)</td>
<td>per doz. 3/6</td>
</tr>
<tr>
<td>A1</td>
<td>Curved rails 1-ft radius</td>
<td>3/6</td>
</tr>
<tr>
<td>A1</td>
<td>Curved half rails</td>
<td>3/6</td>
</tr>
<tr>
<td>A1</td>
<td>Curved quarter rails</td>
<td>3/6</td>
</tr>
<tr>
<td>A1</td>
<td>Curved brake rails</td>
<td>3/6</td>
</tr>
<tr>
<td>A2</td>
<td>Curved rails 2-ft radius</td>
<td>4/6</td>
</tr>
<tr>
<td>A2</td>
<td>Curved half rails</td>
<td>4/6</td>
</tr>
<tr>
<td>A2</td>
<td>Curved quarter rails</td>
<td>4/6</td>
</tr>
<tr>
<td>A2</td>
<td>Curved brake rails</td>
<td>4/6</td>
</tr>
<tr>
<td>D2</td>
<td>Curved rails, double track</td>
<td>4/6</td>
</tr>
<tr>
<td>BM</td>
<td>Straight rails (for MO Trains)</td>
<td>per doz. 2/6</td>
</tr>
<tr>
<td>B1</td>
<td>Straight rails</td>
<td>3/6</td>
</tr>
<tr>
<td>B1</td>
<td>Straight half rails</td>
<td>3/6</td>
</tr>
<tr>
<td>B1</td>
<td>Straight quarter rails</td>
<td>3/6</td>
</tr>
<tr>
<td>BB1</td>
<td>Straight brake rails</td>
<td>3/6</td>
</tr>
<tr>
<td>BB1</td>
<td>Straight brake and reverse rails</td>
<td>1/6</td>
</tr>
<tr>
<td>D1</td>
<td>Straight rails, double track</td>
<td>½ doz. 3/3</td>
</tr>
</tbody>
</table>

CROSSINGS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA1</td>
<td>Acute-angle crossings (for 1-ft radius tracks)</td>
<td>each 1/9</td>
</tr>
<tr>
<td>CA2</td>
<td>Acute-angle crossings (for 2-ft radius tracks)</td>
<td>each 1/6</td>
</tr>
<tr>
<td>CR1</td>
<td>Right-angle crossings (for 1-ft radius tracks)</td>
<td>each 1/9</td>
</tr>
<tr>
<td>CR2</td>
<td>Right-angle crossings (for 2-ft radius tracks)</td>
<td>each 1/6</td>
</tr>
</tbody>
</table>

MECCANO LTD., LIVERPOOL 13

Many interesting illustrations and much useful information regarding Hornby Railway layouts are given in the booklets entitled "How to plan your Hornby Railway," and "Hornby Layouts—One Hundred Suggestions." Each of these booklets is obtainable from your dealer, price 3d., or from Meccano Ltd., Blaina Road, Liverpool 13, price 4d. post free.
Most young men make a slow start in life, and have to wait a long time for promotion, because they have no special knowledge of the sphere of work in which they are engaged.

There is only one way to avoid that; the way of spare-time specialized vocational training. The International Correspondence Schools have been giving such training for 44 years and have enrolled more than 4,500,000 students, hundreds of thousands of whom have won substantial success.

This booklet is comprehensive. It explains the I.C.S. method in detail, and gives brief particulars of all I.C.S. Standard Courses, covering practically every branch of commerce and industry and many professions. Twenty-four other I.C.S. booklets, each dealing with one group of Courses, contain everything the ambitious man would wish to know about the particular Course or Courses that meet his individual needs.

Our 25 booklets, averaging 54 pages each, are entitled as follows:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising</td>
<td>Marine Engineering</td>
</tr>
<tr>
<td>Aeronautical Engineering</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Mining</td>
</tr>
<tr>
<td>Architecture & Building</td>
<td>Motor Engineering</td>
</tr>
<tr>
<td>Art for Commercial Use</td>
<td>Radio</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Railway Equipment</td>
</tr>
<tr>
<td>Commercial Training</td>
<td>Running</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Salesmanship and Management</td>
</tr>
<tr>
<td>Domestic Engineering</td>
<td>Window Dressing</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Scientific Management</td>
</tr>
<tr>
<td>General Education</td>
<td>The Services (Civil, etc.)</td>
</tr>
<tr>
<td>Languages</td>
<td>Textile Manufacturing</td>
</tr>
<tr>
<td>Lettering & Showcard Writing</td>
<td>Woodworking</td>
</tr>
</tbody>
</table>

(Take your pick from the above list, any or all as the case may be.)

We believe that this booklet will be useful to all who are interested in vocational training. It is free and we shall be pleased to send it to you post free.

THE RAILWAY MAGAZINE
PRINCIPAL CONTENTS
FEBRUARY ISSUE
The L. & N.W.R. “Jumbo” Type. Early Days on the Footplate.
Familiar Features of Operation—II. Train Lighting.
The Chappar Ratt.
The Stratford & Moreton Railway.
The Melamoros of the French State Railways.
The Kent & East Sussex Railway.

THE RAILWAY MAGAZINE
MONTHLY
Illustrated
ONE SHILLING
33, TOTHILL ST., WESTMINSTER LONDON, S.W.1

WEBLEY AIR PISTOLS

Marvellously accurate for target practice.
No license required to purchase.
Senior 45/-, Mark 1 50/-
Junior 20/6.
Write for List.
WEBLEY & SCOTT LTD.
87, WESLEY STREET, BIRMINGHAM, ENG.

Cigarette Cards
Get
THE ONLY
COMPREHENSIVE CATALOGUE
Over 1,500printednow Listed.
FREE AND POST FREE.

THE CIGARETTE CARD NEWS

The hobby's monthly journal. Single copy 2/-,
six months, 1/6 post free.

THE LONDON CIGARETTE CARD CO. LTD.
Room E, Cambridge House, Cambridge Road,

WATKINS & DONCASTER
Stock everything for the Collector of Birds' Eggs,
Butterflies, Plants, etc.

FULL CATALOGUE PER RETURN OF POST.
Silkworm Eggs, 1/3 per 100; Zinc Cages for Breeding,
6/3 each; Handbook on Keeping and Breeding, 2/3;
all post free.

Large stock of Books on all branches of Natural History.

36, STRAND, LONDON, W.C.2.
P.O. Box 126.

BECK SCIENTIFIC INSTRUMENTS LTD.
60, HIGH STREET.
STOKE NEWINGTON, LONDON, N.16.
Write for Catalogue—FREE.

SCYTHE 2/6

2/6, 2/6, 2/6

-paid in parts to make up

FINISHED MODELS 1/6, 1/6

BULLIANT TABLES
TENNIS TABLES
CHEMICAL OUTFITS
ELECTRICAL OUTFITS
MODEL THEATRES
CONJURING AEROPLANES MATERIALS
MOTOR BOATS
CARPENTERS' TOOLS
SAILING BOATS
STEAM-ELECTRIC—CLOCKWORK MACHINES
AND MANY OTHER LINES

THE MECCANO MAGAZINE
xxiii

C. LUCAS
Hobbies Depot
17, HOUGHTON ST., CLAYTON SQUARE
LIVERPOOL 1

ROBOTS

Scale Model Aeroplanes

SKYBIRD . . . 2/6, 2/6, 2/6

SPECIAL MODEL

1 Flap, 1 Flat, 150 c.c.; 1 Beaker, 1 Apothecary, 1 Pocket, 1 Tablets, 20 cm.; 3 ft. Glass Tubing; 1 Rubber Cork, 2 holes; 4 inches Plastic Adhesive Tape.

£2 6/9

FREE

Silk 1/6

Electrical Equipment

Fits a Veeder

A new interest awaits you if you fit a "Veeder". It tells you to a fraction how far you've travelled—how far you go. The exact mileage from one place to another—service your tire—service your veeder—service your tires gives you more in the long run.

Central "Hand" Supplies, 11, Friars Street, Ipswich.
MECCANO LUBRICATING OIL

Before commencing to operate a Meccano model, or to run a Hobby Train, all gears and bearings should be adequately lubricated thoroughly with Meccano Lubricating Oil. This can be easily prepared and is of the right consistency for the purpose.

Price per bottle 6d.

MECCANO LTD., Bluns Road, Liverpool 13.

MECCANO WRITING PADS

These Writing Pads are just the thing to use when writing to your friends or to the Editor. They are supplied in two sizes, each consisting of 36 printed sheets of tinted bank paper with covers. Prices—Large, 1/2 each (post free); Small, 6d. each (post free).

ENVELOPES

Special envelopes, attractively printed and matching the writing paper in colour, are also available. These are suitable for both the large and the small size of the Meccano papers. Price, per packet of 50, 6d. post free.

MECCANO LTD., Bluns Road, Liverpool 13.
HORNBY SPEED BOATS

The Best that you can Buy

Hornby Speed Boats and Racing Boats are the finest examples of model craftsmanship ever produced. Exceptional performance, graceful lines and beautiful finish are the outstanding characteristics of these splendid boats. They introduce a new standard of excellence in British toys. They are superb!

Hornby Speed Boats

When other boats are slowing up, the Hornby Speed Boats are still going strong. The special design of the propeller and the unique methods employed in the construction of the hull give each model exceptional speed and length of run. Every line and every feature of the Hornby Speed Boats emphasise their excellent qualities of speed and reliability. Each model is available in three different colour combinations.

Hornby Racing Boats

The Hornby Racing Boats have been introduced to meet a widespread demand for faster boats to be used for racing. They are specially constructed to travel at a high speed, and their remarkable performance, perfect design and beautiful appearance have gained for them a unique popularity amongst boys.

Price List

HORNBY SPEED BOATS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORNBY SPEED BOAT No. 1, "HAWK."</td>
<td>2/11</td>
</tr>
<tr>
<td>HORNBY SPEED BOAT No. 2, "SWIFT."</td>
<td>7/6</td>
</tr>
<tr>
<td>HORNBY SPEED BOAT No. 3, "CONDOR."</td>
<td>12/6</td>
</tr>
<tr>
<td>HORNBY SPEED BOAT No. 4, "VENTURE."</td>
<td>16/6</td>
</tr>
</tbody>
</table>

HORNBY RACING BOATS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORNBY RACING BOAT No. 1, "RACER I."</td>
<td>4/6</td>
</tr>
<tr>
<td>HORNBY RACING BOAT No. 2, "RACER II."</td>
<td>8/6</td>
</tr>
<tr>
<td>HORNBY RACING BOAT No. 3, "RACER III."</td>
<td>14/6</td>
</tr>
</tbody>
</table>

HORNBY WATER TOY

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORNBY WATER TOY (Duck). Price 3/3. Travels over 100 ft. on one winding, finished in appropriate colours. Ask your dealer to show you the Hornby Speed Boats and Racing Boats.</td>
<td></td>
</tr>
</tbody>
</table>
MECCANO MOTOR CAR
CONSTRUCTOR OUTFITS

Build your own Motor Cars!

Now is the time to get a Meccano Motor Car Outfit. You will never grow tired of building and running the superb models that you will be able to build. Your days will be full of fun and thrills!

Perfect miniature reproductions of many different types of car can be built with these splendid Outfits, including sports four-seaters, speed cars, sports coupés and others. A powerful clockwork motor, that gives the models a long run on one winding, is included in each Outfit.

The parts are finished in rich enamel and nickel-place, the complete Outfits being masterpieces of miniature automobile craftsmanship.

No. 1 Motor Car Constructor Outfit

The motor car models that can be built with this Outfit are the finest you ever saw. Look at the examples shown in the accompanying illustrations and think of the fun you could have building these and other types equally graceful and realistic.

No. 1 Outfit is available in four different colour combinations—Red and Light Blue, Light Blue and Cream, Green and Yellow, and Cream and Red. It is supplied complete with powerful Clockwork Motor. Price 14/6.

Choice Range of Colours

If extra parts in any of the standard colours are required they can be purchased from any Meccano dealer. In addition to the four standard colour combinations, the following parts are available in the colours indicated:

Body Sections: orange, yellow
Wheels: orange, yellow
Wings: orange, green

No. 2 Motor Car Constructor Outfit

Larger models of a superior type can be built with No. 2 Outfit. They are perfectly designed, beautifully finished and the most attractive examples of constructional engineering ever produced for the delight of boys. Their handsome and realistic appearance may be judged from the accompanying illustrations.

No. 2 Outfit is available in four different colour combinations—Red and Light Blue, Light Blue and Cream, Green and Yellow, and Cream and Red. A powerful Clockwork Motor that gives a run of 150 feet on one winding is included. Price 25/6.

Motor Car Lighting Set

This Lighting Set enables the headlights of Motor Car models built with the 1932 No. 2 Motor Car Outfit to be electrically lighted. Price 2/6

The Lighting Set contains everything necessary for equipping No. 2 Motor Car models with electric lighting, excepting a dry battery. This should be of the 2-volt type, size 2½in. (6.3cm.) in diameter, and may be obtained from any dealer in electrical supplies.

Motor Car Garage

The Meccano Motor Car Garage provides accommodation for any Meccano model motor car or other car of suitable size. Inside dimensions: Height 3 in. Length 13 in. Width 7⅛ in. Price 7/6

Manufactured by
Meccano Ltd., Binns Rd., Liverpool 13

Published by MECCANO LTD., BINNS ROAD, LIVERPOOL 13, ENGLAND.
Printed by John Waddington Ltd., Leeds and London.